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Abstract

Information goods (or information for short) play an essential role in modern

economies. We consider a setup where information has some idiosyncratic value for each

consumer, exerts externalities and can be freely replicated and transmitted in a com-

munication network. Prices paid for information are determined via the (asymmetric)

Nash Bargaining Solution with endogenous disagreement points. This decentralized

approach leads to unique prices and payoffs in any exogenous network. We use these

payoffs to find connection structures that emerge under different externality regimes

in pre-trade network formation stage. An application to citation graphs results in

eigenvector-like measures of intellectual influence.
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1 Introduction

Information plays an ever more important role in modern economies. The growing infor-

mation industry (or sector) comprises not only companies that produce information goods

(e.g., media products, software) and services (e.g., consulting, education) but also com-

panies that process (e.g., banking, insurance) and disseminate (e.g., telephone, internet)

information. Nowadays, information created in this sector is traded predominantly in elec-

tronic form and appears in various manifestations, e.g., as music, e-books, patents or (fake)

news. Following Shapiro and Varian (1999), we use the term information good (IG or in-

formation for short) very broadly. Essentially, anything that can be digitized - encoded as

a stream of bits - is information. Muto (1986) identified the following distinctive properties

of IGs: free replication, indivisibility, irreversibility of trade and negative external effects.1

In this work, we assume the first three properties and generalize the last one to external

effects of any sign (with no externalities as a special case). We posit further that individ-

ual consumption values of the IG and its externalities are known to all players before they

acquire information. This premise of complete information extends to all other aspects of

the model. Finally, we assume that information diffuses sufficiently fast - potentially, at

the speed of light - to all prospective consumers. Then, we can neglect its depreciation

and the discounting of (dis)utilities resulting from its consumption. This is a reasonable

approximation for, e.g., automated transmission of digitized contents.

Information propagates through transmission channels that form a communication net-

work, e.g., a distribution network for IGs, data transmission infrastructure or a virtual

network implied by copyright regulations. Social and business contacts also serve as an

ideal vehicle for information exchange. The importance of social networks for informa-

tion diffusion is exemplified by the huge success of online networking communities such as

Facebook and Twitter. Generally, a link in a communication network represents a channel

through which a holder of an IG can transfer a copy of it to a connected agent.

In this article, we analyze the impact of communication networks, externalities and

1Free replication : Each trader can create identical replicas of the IG at no cost. Indivisibility : A possessor
benefits from exactly one unit of the IG. Irreversibility: buyers cannot return the IG or cancel the trade.
Negative external effects : Each possessor of the IG is negatively affected if others acquire this good.
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valuations on the price of IGs that display the aforementioned properties. Our analysis is

based on a (non-strategic) model of bilateral trade in networks. Like similar models, we

assume that a seller and a prospective buyer can trade if and only if they are connected. The

price paid in a bilateral transaction is calculated via the (asymmetric) Nash Bargaining

Solution (e.g., Binmore et al., 1986) with endogenous disagreement points. As natural

disagreement values, players in each trading pair use their respective (expected) payoffs

from a hypothetical perpetual disagreement. This setup leads to unique prices and payoffs

in any exogenous network. We use these payoffs to analyze a network formation stage that

precedes information diffusion.

Our analysis yields the following main insights. Firstly, information diffuses to all

players who can be reached along a (directed) path in the underlying network from the

initial set of sellers. The order in which trades occur and information is transferred has,

however, no impact on payoffs and prices of information. Secondly, we devise a recursive

algorithm to calculate the unique prices and payoffs for any given network, externalities

and initial set of sellers. We characterize the connectivity of nodes that obtain information

for free and provide an explicit formula for the payoff to a single seller of information. This

formula elucidates the role of externalities exerted along critical paths2 from this seller to

prospective buyers. Thirdly, we use the unique payoffs in fixed networks to find connection

structures that emerge under different externality regimes in a pre-trade network formation

stage. Finally, in an application to citation networks, we derive eigenvector-like measures

(Bonacich and Lloyd, 2001) of intellectual influence.

In order to illustrate the broad spectrum of applications of the model, we consider the

following stylized examples (see Figure 1 for their graphical representation). We consider

generalizations of these examples in Section 5 in the context of network formation.

a Positive externalities, tree network (Figure 1a): A firm can use a medium (televi-

sion, print, internet, etc.) to advertise its product in order to attract prospective

customers. We model this situation as a (directed and rooted) tree with the root

(advertiser) that is connected to an internal vertex (e.g., a TV station) that in turn

2We define critical paths in Section 3.
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is connected to a set of leaf nodes (viewers, prospective customers). Whenever a

prospective customer watches an ad, the probability that she will buy the product

increases, which we interpret as a positive externality on the advertising firm. Inter-

estingly, the ad itself has no (or has, perhaps, even a negative) intrinsic value for all

agents.

b Negative externalities, star network (Figure 1b): In a bleak future scenario, a biotech

company creates a deadly virus (and the antidote) and then offers its know-how

to rival countries. Obviously, such a biological weapon in the arsenal of a country

amounts to a threat (and a heavy cost) for its adversaries. A less bellicose example

is motivated by the growing importance of markets for information and data brokers.

Data brokers (or information re-sellers) collect, process and package data that they

then sell to other firms. Accurate information about the business environment and

market conditions can be hugely beneficial to a firm giving it an advantage over

uninformed competitors. In a simplified form, we model this situation as a star

network, where the center (data broker) is connected to a set of spokes (competing

firms) and each spoke is harmed by information acquired by another spoke.

c No externalities, complete network (Figure 1c): Copyright regulations shape a virtual

connection structure by defining property rights for IGs. Assume, for example, that

an IG with negligible externalities is sold under the General Public Licence.3 This

licence allows each buyer to freely copy, distribute and modify the IG, provided that

all copies and further developments are subject to the same licence. We interpret

this ”copyleft” covenant as a complete undirected network that connects all current

and prospective possessors of the IG.

Figure 1.

The reminder of the article is structured as follows. Section 2 revises the related

literature. Section 3 introduces the model, whereas Section 4 presents our results for

exogenous communication networks. Based on these results, Section 5 studies network

3The terms of the GNU GPL are available at: http://www.gnu.org/copyleft/gpl.html
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formation. Section 6 applies the model to citation graphs and Section 7 concludes. Proofs

of the main results are relegated to the Appendix.

2 Related Literature

Information networks were first analyzed by graph theorists in the context of gossip and

broadcast problems. In a gossip network every individual possess a unique piece of gossip

which needs to be communicated to the others. In the broadcast version, one person

wishes to communicate information to all others in the network. A survey of the seminal

literature on gossip and broadcast networks can be found in Hedetniemi et al. (1988).

Recent contributions consider spreading rumors - unverified or unconfirmed statements

circulating in a community - as a strategic game (e.g., Bloch et al. 2018; Redlicki, 2015).

These contributions belong to the large body of work on social learning. A classic setup in

this literature assumes that some agents have private (incomplete) information about the

state of the world which influences all players’ utilities. Before engaging in a payoff relevant

interaction, players decide strategically either to whom or/and how much of their private

information to reveal (e.g., Gal-Or, 1985; Koessler and Renault, 2012), or they invest in

pairwise communication channels (e.g., Calvó-Armengol et al., 2015) or simultaneously

send cheap talk messages to each other (e.g., Hagenbach and Koessler, 2010; Galeotti et

al., 2013). Alternatively, some authors consider non-strategic information transmission

in the context of naive (e.g., Golub and Jackson, 2010) or Bayesian (e.g., Mueller-Frank,

2013) learning. In any case, the focus of these models is on the ability and efficiency of a

population to aggregate information in a fixed or in an endogenously formed communication

network. There is also a substantial work on the role of local strategic interactions in the

diffusion of conventions, standards and inventions in socioeconomic networks (e.g., Chwe,

2000; Ellison, 1993; Bhaskar and Vega-Redondo, 2004).

Our work relates to the large literature on bilateral trade in networks (see Manea, 2016,

for a recent survey). Two agents can trade with each other in these networks if and only if

they are connected. In our framework, each holder of an IG can sell it to all adjacent buyers.

However, unlike most models in this literature, a transaction does not entail the departure
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of the trading pair from the network and the deletion of all adjacent links. Instead, it ushers

a new configuration with more sellers and fewer buyers. The present model complements

the relevant literature by analyzing how the special properties of information goods (in

particular, their externalities) interplay with the connection structure.

Most of the aforementioned work has focused on understanding the impact of an ex-

ogenously given (bipartite) network on the outcome of trade. Some authors study endoge-

nous network formation. For example, Wang and Watts (2006) examine the formation of

trade networks in quality-differentiated product markets, whereas Elliott (2015) proposes

a two-stage game: First, players simultaneously decide their linking (relationship-specific)

investments and, then, bargain and trade over the created network. Galeotti and Goyal

(2010) develop a model where players decide simultaneously to acquire information and

form connections with others to access their information. In this work, we will allow

agents (social planner) to form (design) communication structures in a network formation

stage that precedes information diffusion. We focus then on pairwise stable, optimal and

(socially) efficient structures that emerge under different externality regimes.

Technological advances and the explosion of e-commerce have inspired a rich theoretical

and empirical work on pricing policies for information goods. Varian (2000) is a general

introduction to information goods and their pricing, whereas Linde (2009) is an example of

new forms of price discrimination made possible by special economic features of informa-

tion. Increasingly, firms turn to social networks to diffuse their products relying on word-

of-mouth communication for advertising and exploiting consumption externalities among

consumers. The advent of the internet has vastly increased the ease and scope of viral mar-

keting. In this context, the question "who influences whom" is of fundamental interest.

The development of new methods to identify influential and susceptible consumers from

large data sets is an active research area in the intersection between business/marketing

and information systems. Probst et al. (2013) is a survey of this literature, whereas Bloch

(2016) revises recent theoretical work on targeting and pricing in social networks. Our

work differs significantly from the main strand of this literature by explicitly assuming

that a buyer of information will resell it to all other connected buyers.

Closest in spirit to this article are the works by Galbreth et al. (2012), Muto (1986),
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Ali et al. (2016), Polanski (2007) and Manea (2017). Galbreth et al. (2012) examine the

effect of social sharing on the price of information goods under different network structures.

Muto (1986) considers two types of markets for information goods: Markets with free resales

and markets where resales are prohibited (i.e., complete networks and stars, respectively).

He models the trading process as a multilateral bargaining in which each possessor of

information offers simultaneously a price to every demander who can accept or refuse the

trade. Ali et al. (2016) study a game with discounting, where sellers and prospective buyers

bargain and trade information bilaterally, and the buyers may resell it. For the network

structures they consider (complete networks and stars) their results coincide qualitatively

with those obtained in the present work.

In Polanski (2007) and in Manea (2017), prices of a homogenous IG are calculated

in a sequence of bilateral meetings of agents connected in the underlying network. Both

authors use the (asymmetric) Nash Bargaining Solution to determine the terms of trade

for the matched buyer-seller pairs in each configuration (state). Disagreement points for

these pairs are set to their respective (expected) payoffs in the same configuration as

the latter persists if they fail to agree. However, both authors impose a different rule

when trade is possible in one link only. In this case, the disagreement points are set to

zero. The present framework enriches both models by allowing network formation and

idiosyncratic externalities of information. Unlike Polanski (2007) and Manea (2017), we

assume immediate agreement in all matched links and, more importantly, we prescribe a

uniform rule for all disagreement points: They are uniquely defined by the respective payoffs

that the matched pair would obtain in case of (hypothetical) permanent disagreement in

the current configuration. For fixed networks and negligible externalities, all these models

produce identical results when evaluated with the same values for sellers’ bargaining power

and agents’ valuations.

3 The model

Defintions and notation. We consider a graph (network) G ≡{N ,L} with the finite

set of nodes (vertices) N ≡ {1, ..., n} and the set of directed edges L ⊆ {vw : v, w ∈ N}.
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If vw ∈ L and wv ∈ L there exists an undirected edge vw between v and w. A (directed)

path from a vertex v1 to a vertex vk in G is a sequence of nodes (v1, v2, ..., vk), vi ∈ N ,

such that successive vertices vi and vi+1 are endpoints of the intermediate edge vivi+1 ∈

L. In a connected component a path exists between any two nodes. A cycle is a path

(vi, ..., vk, ..., vi) in which all but the first and the last node are pairwise different. An

acyclic graph has no cycles. In the complete graph, the shortest path from vertex v to

another node w is (v, w). A vertex v ∈ N can be reached (is accessible) in G from a subset

V ⊆ N if a path from a node k ∈ V to v exists. Only in this case, information can flow

from V to v. Furthermore, we say that a node v ∈ N is connected (adjacent) to another

vertex w ∈ N if vw ∈ L. The set of all vertices adjacent to the node v will be denoted

Nv(G) ≡ {w ∈ N : vw ∈ L} and occasionally referred to as v’s neighbors.

A crucial role in our analysis is played by critical paths. Critical path δv→w ≡ δv→w(G)

in the network G is the longest path (i.e., a sequence of nodes) that starts at v and is shared

by all paths from v to w. For example, in undirected trees δv→w = (v, ..., w) is the unique

path from v to w, whereas in the complete network δv→w = (v). When no path from v to

w exists or w = v, we set δv→w ≡ (v). Figure 2 and Figure 3 illustrate critical paths in

directed and undirected networks, respectively.

Figure 2.

We denote by S ⊆ N the subset of holders (possessors, sellers) of a perfect copy of an

underlying IG. When there is no risk of confusion, we will use the shorthand C for (G,S) and

refer to C as configuration. We define further B ≡ B(C) ⊆ N as the subset of prospective

buyers of the IG that can be reached in G from the set S. Hence, B ∩ S = ∅, B ∪ S ⊆ N

and for each b ∈ B there is some s ∈ S such that a path from s to b exists in G. Note

that B(C) = ∅ when S = ∅ or S = N . If a subset X ⊆ B of buyers acquires information in

configuration C, the ensuing configuration will be denoted by C ⊕ X ≡ (G,S ∪ X ). When

X = {x}, we simply write C ⊕ x, S ∪ x, etc. Ordered seller-buyer pairs sb ∈ (S × B) ∩ L

that are connected in L form the set L(C) of active pairs (links). Each active pair can

trade information. Note that L(C) = ∅ if and only if B(C) = ∅. An active player is a node

covered by at least one active link. Moreover, we write #X for the number of elements in
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the set or sequence X and define the indicator function Ic ≡ 1 (0) when the condition c is

true (false).

Information acquired by a player has a (possibly negative) consumption value for her but

it also may impose externalities on other players. We collect the valuations and externalities

in the matrix W = (̟bk)b,k∈N . Each ̟bk ∈ R (with the special case of b’s intrinsic value

or valuation ̟bb) stands for the one-off (dis)utility that player k ∈ N realizes when player

b ∈ B consumes the IG (learns the relevant piece of information). As we neglect depreciation

and discounting, this utility will not depend on the date of information acquisition by agent

b. In addition to the examples a−b in the Introduction, this type of externalities result, e.g.,

from revelation of confidential data on platforms such asWikileaks or in telecommunication

networks, when both the caller and the receiver benefit from a call (Jeon et al., 2004).

It is important to stress that not all forms of externalities are captured by the approach

embodied in the matrix W . For example, information may exhibit network (external)

effects (e.g. Shapiro and Varian, 1999; Crémer, 2000). In this case, the value of IGs

(or other goods) is affected by the number of agents possessing the same good. Typical

example are the adoption of new information technologies, standards or social behavior.

Generally, externalities could depend on the set of players that possess the relevant piece

of information.4 In our framework, the intrinsic value of an IG is independent of any other

holders of this good. However, when each possessor exerts externalities, their increasing

number will have a cumulative impact on agents’ total payoffs.

Pairwise matching and bilateral trading. In a configuration C with L(C) �= ∅

at most one active pair meets at each (discrete) date t = 1, 2, ... In the matched pair sb ∈

L(C), the seller s ∈ S transfers the IG to the buyer b ∈ B, who pays the price5 psb(C), each

player k ∈ N obtains the (dis)utility ̟bk and the configuration C ⊕ b with the set of sellers

S∪b (and the set of buyers B\b) ensues in t+1. Crucially, we allow each information holder

to produce an arbitrary number of perfect copies of it at zero cost that can be transferred

to any neighbour. Information diffusion ends when a configuration C with L(C) = B(C) = ∅

4Fainmesser and Galeotti (2015) distinguish between global network effects (when an individual is af-
fected by the consumption of the entire population) and local network effects (when an individual is affected
by the consumption of a subset of the population).

5 In principle, this price could depend on past events and the date t. As this is never the case in our
model, we simply write psb(C).
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is reached.

We need not make any assumptions on how a particular pair is selected other than

supposing that every link sb ∈ L(C) is chosen with some probability that is bounded away

from zero.6 This requirement implies that information diffuses to all accessible buyers with

probability one and ensures that the connection structure is preserved during the diffusion

process. If an active link never traded the resulting outcome would reflect the connection

pattern of a reduced graph.

The price psb(C) paid in the active link sb for the IG is determined via the asymmetric

Nash Bargaining Solution (NBS) with exogenous bargaining powers and endogenous dis-

agreement points.7 We collect the bargaining powers in the matrix T = (θik)i,k∈N , where

θik ∈ (0, 1) is the share of the net surplus, created when i sells the IG to k, that accrues to

seller i. The remainder 1−θik of this share goes to the buyer k. Note that this specification

allows for role-dependent bargaining powers. For example, player’s i bargaining position

vis-à-vis player k may become stronger when she sells information (θik > θki). We say that

i and k have symmetric bargaining positions when θik = θki = 1/2. For a pair sb ∈ S × B

and k ∈ sb, we define further θsbk ≡ θsb when k = s and θ
sb
k ≡ 1− θsb when k = b.

Regarding disagreement points, we make the following assumptions. If sb is the only ac-

tive pair in the configuration C, i.e., L(C) = {sb}, their hypothetical perpetual disagreement

would lead to zero payoffs for all players as information would not spread to any prospec-

tive buyer. Hence, we set disagreement values to zero for both s and b. On the other hand,

if sb ∈ L(C) decided to perpetually disagree in configuration C, when L(C) contains more

than one active pair, then some other link would eventually meet and trade (remember that

each active pair trades with positive probability). Thus, we assume that the disagreement

values for s and b are the respective payoffs resulting from a trade elsewhere. As we show

below, the latter payoffs do not depend on the trading link. Importantly, disagreement

considered by an active link is hypothetical and treated as such by all players given the

stipulation that information flows through all active links with positive probability.

6 In order to minimize inessential notation, we do not formally define a matching protocol.
7Asymmetric NBS (e.g., Binmore et al., 1986) for the bilateral bargaining problem with the disagreement

points d1 and d2, bargaining powers θ1 ∈ [0, 1] and θ2 = 1− θ1 and the surplus S is the solution x∗1 = d1+
θ1(S − d1 − d2) and x

∗
2 = d2+ θ2(S − d1 − d2) to maxx1,x2(x1 − d1)

θ1(x2 − d2)
θ2 , s.t. x1 + x2 = S.
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This protocol ignores the possibility of strategic no-trade matchings. This simplifica-

tion allows for sharp predictions and straightforward applications of our trading model.

Although innocuous in many situations, one can easily construct examples (see Section

5) where a matched pair may prefer to disagree on the terms of trade, i.e., to dissolve

the match without the transfer of information. A rational (dis)agreement, however, will

often depend on (dis)agreement decisions in other links, which leads to a complex strategic

interaction. In Section 5, we study a network formation stage that precedes information

trading.

Agreement payoff and transferable surplus. For a fixed configuration C, we will

denote by xsbk (C) the payoff to player k ∈ N , when trade takes place in the link sb ∈ L(C).

Similarly, xk(C) is the expected or ex-ante payoff in configuration C. As we show below,

xsbk (C) and xk(C) are unique for each C. In particular, xk(C) = 0 when C does not allow

for information diffusion, i.e., when L(C) = B(C) = ∅. When C admits trading in the link

sb ∈ L(C), we compute the payoff xsbk (C) as,

xsbk (C) = ̟bk + xk(C ⊕ b) + (Ik=s − Ik=b)psb(C), ∀k ∈ N , (1)

which simply states that each player k obtains the (dis)utility ̟bk and expects the con-

tinuation payoff xk(C ⊕ b) in configuration C ⊕ b that ensues after player b has acquired

information (note that the continuation payoffs are not discounted). Moreover, if k = s

(k = b), then k also receives (pays) the price psb(C) for the IG. This price is determined by

(1) and the NBS sharing rule,

xsbk (C) = d
sb
k (C) + θ

sb
k (Ssb(C)− d

sb
s (C)− d

sb
b (C)), (2)

where dsbk (C) is player’s k ∈ sb (endogenous) disagreement point in the link sb and the

transferable surplus Ssb(C) is the sum of payoffs (1) for s and b following their agreement

in C,

Ssb(C) ≡ x
sb
s (C) + x

sb
b (C) = ̟bs + xs(C ⊕ b) +̟bb + xb(C ⊕ b). (3)

Hence, the surplus Ssb(C) consists of b’s valuation ̟bb, this player’s externality ̟bs exerted
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on s and the continuation payoffs for both players in the ensuing configuration C ⊕ b.

As advanced earlier, for the disagreement value of player k ∈ sb ∈ L(C), we consider

two cases: dsbk = 0 when {sb} = L(C) and d
sb
k = x

s′b′

k (C) for some active link s′b′ �= sb when

{sb, s′b′} ⊆ L(C). The former case reflects the fact that no further (dis)utility would be

created if s and b perpetually disagreed in a configuration with the single active link sb.

The latter case prescribes for the link sb the disagreement payoffs that result from a trade

in another link s′b′ �= sb. As we show in the next section, the payoff (2) does not depend

on the choice of s′b′.

4 Exogenous networks

Order independence and recursive payoff computation. Our liberal assumptions

on the matching procedure may suggest a multiplicity of (expected) payoffs. Fortunately,

our first result dispels this possibility. This result, which we refer to as order independence,

shows that the payoff to a player does not depend on the link that agrees and trades. Hence,

the paths of information diffusion are irrelevant for the payoffs.

Proposition 1. (order independence) There are unique payoffs {xk(C)}k∈N for any con-

figuration C. These payoffs neither depend on the (non-vanishing) matching probabilities

nor on the trading pair:

xk(C) = x
sb
k (C), ∀k ∈ N , ∀sb ∈ L(C) �= ∅.

Order independence implies that none of the players loses valuable trade opportunities

when transactions occur in non-adjacent links. In particular, buyers are not harmed by

transactions elsewhere as the latter can only improve their bargaining position, whereas

delays to trade are inconsequential for valuations and externalities. Then, each buyer b

acquires the IG at a price that she would obtain after all trades not involving her had taken

place. In the corresponding configuration C, there is either only one active link sb ∈ L(C)

and the NBS (2) yields xsbk (C) = θ
sb
k Ssb(C) for k ∈ {s, b} or the competition among sellers

drives the price to zero and (1) boils down to xsbk (C) = ̟bk+ xk(C ⊕ b) for any active
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link sb ∈ L(C). Therefore, the ex-ante payoff to any player k ∈ N in configuration C is

computed recursively by (1),

xk(C) = ̟bk + xk(C ⊕ b) + (Ik=s − Ik=b)psb(C), ∀k ∈ N ,∀sb ∈ L(C). (4)

with the price psb(C) determined in our next result.

Proposition 2. In configuration C with at least one active buyer, the price paid in the link

sb ∈ L(C) for information verifies,

psb(C) =






̟bb + xb(C ⊕ b)−̟b′b − xb(C ⊕ b
′), ∀s′b′ ∈ L(C), s′b′ �= sb,

θsb · Ssb(C)−̟bs − xs(C ⊕ b), if L(C) = {sb},
(5)

where Ssb(C) is defined in (3). Moreover, psb(C) = psb(C⊕b
′) for all s′b′ ∈ L(C) with b �= b′.

We can apply (4)-(5) recursively to obtain unique payoffs to all players in configuration

C. Specifically, if L(C) �= ∅, we first find all active links. If there are more than one, we select

any two of them, say sb and s′b′, and compute psb(C) by the first line in (5). Otherwise,

the price in the single active link is given by the second line in (5). The computed price

is, then, substituted into (4). By order independence, the resulting payoffs will not depend

on the selected links. This algorithm expresses each payoff in C as a linear combination of

externalities and payoffs in configurations with one more seller. Note that the recursion

is closed as xk(C) = 0 when B(C) = ∅, i.e., when no active buyers (and links) remain.

Although easily implemented as a computer program, the formulae (4)-(5) offer no direct

insights into the interplay of the network, valuations and externalities in the determination

of information prices and payoffs. Our next results go some way in this direction. First,

we need the following definition.

Definition 1. Given a configuration C = (G,S), we say that a buyer b ∈ B(C) satisfies

the two paths property (with respect to S) when it has at least two neighbors v,w ∈ N , b ∈

Nv(G) ∩Nw(G), and each of them either belongs to the set S or it can be reached from S

by a path that does not include b.

The two paths property is illustrated in Figure 3 and its implication is presented in the
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next proposition.

Figure 3.

Proposition 3. Each buyer that satisfies the two paths property obtains the IG for free.

When buyer b has two seller neighbours in configuration C, say s and s′, and sb, s′b ∈

L(C), this result follows directly from (5) in Proposition 2. Otherwise, the two paths

property and order independence ensure that such a configuration can be reached from the

initial set of sellers without affecting b’s payoffs. Intuitively, the absence of opportunity

costs (no discounting) gives a strong bargaining position to buyers satisfying the two paths

property. These buyers can wait until at least two of their neighbors become sellers and

compete with each other driving the price to zero. For example, in the network in Figure

3, player 2 satisfies the two paths property when node 3 is the single IG seller. If this

player waits for the buyer 4 to acquire the IG from 3, then she will face two sellers of a

perfect substitute. On the other hand, player 2 does not satisfy the two paths property

when vertex 1 is the single seller. In this case, player 2 has no choice but to split up the

surplus with this seller.

A particularly transparent situation arises when all buyers satisfy the two paths prop-

erty as is the case of the complete network. Then, all payoffs are computed by summing

up the columns of the matrix W .

Corollary 1. If all buyers in the configuration C satisfy the two paths property, then,

xk(C) =
�
b∈B(C)̟bk, ∀k ∈ N .

The proof of this corollary follows directly by the recursive expansion of (4) with all

prices equal to zero. Interestingly, the bargaining powers are irrelevant for the payoffs in

this case.8

The next, somehow polar, scenario contemplates arbitrary undirected networks and

"local externalities". The latter refer to situations, where only consumer b and her linked

8As a consequence of Proposition 1, in configurations with at least two active links, each trading player
obtains her disagreement value. In these configurations, the bargaining power is irrelevant for price and
payoff computation.
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acquaintances are affected by b’s information consumption. Think, for instance, of posts

on Facebook that intend to impress friends. Formally, W displays local externalities when,

̟bk �= 0⇒
�
b = k or kb ∈ L

�
. (6)

The payoffs in this scenario highlight the role of bridges or cut-edges for information pricing.

We say that a link vw ∈ L is a bridge (cut-edge) in an undirected graph G when its deletion

increases the number of connected components. The concept of critical path conveys this

property succinctly: vw ∈ L is a cut-edge if and only if δv→w = (v, w) (or, equivalently,

δw→v = (w, v)). Bridges are the only edges across which non-zero prices are paid for

information.

Corollary 2. For matrix W that satisfies (6) and undirected graph G, the total payoff to

the single seller k in configuration C = (G, {k}) is computed by the recursive formula,

xk(C) =
�

kb∈L:δk→b=(k)

̟bk +
�

kb∈L:δk→b=(k,b)

θkb {̟bb +̟bk + xb(C ⊕ b)} , ∀k ∈ N . (7)

To show (7), we note first that any neighbor b of k such that δk→b = (k) exerts the

externality ̟bk but obtains the IG for free as b satisfies the two paths property. For k’s

neighbor b such that δk→b = (k, b), we invoke order independence and assume that all

active links but kb have traded. Then, the surplus to divide between k and b is equal to

̟bb+ ̟bk+ xb(C⊕b) because after buying the IG, b will be the only seller in the connected

component of G obtained by cutting the bridge kb (k will be inactive after this transaction).

In this case, k receives the share θkb of this surplus by the NBS.

The last formula shows, in particular, that only players connected by cut-edges will

be able to extract a positive surplus from their neighbors either as information creators or

intermediaries. In the latter case, they will also have to pay a non-zero price for information

that arrives through a cut-edge. In the next subsection, we generalize the case of a single

seller to any externality structure and directed networks.

The case of a single seller. Probably the most interesting case for practical

applications is the situation of a single creator of an IG, who wants to sell it to a network
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of prospective buyers. This case is of particular importance for the evaluation of incentives

to create IGs. The next result shows that the profit (or loss) of a single seller of an IG is

intimately related to externalities exerted along the critical paths from this seller to the

accessible buyers.

Proposition 4. The payoff to the single seller s in configuration C = (G, {s}) is given by,

xs(C) =
�

b∈B(C)

�
�

k∈δs→b

̟bk · θ
min{#δs→k,#δs→b−1}

	

, (8)

when θ = θik ∈ (0, 1) for all i, k ∈ N and xs(C) = 0 if B(C) = ∅.

The formula (8) can be interpreted as follows: For each accessible buyer b ∈ B(C), the

single seller s ∈ S extracts a share of the externalities that this buyer exerts on each node

k ∈ N along the critical path δs→b (including b’s "externality" ̟bb on itself if b ∈ δs→b).

Seller’s share falls geometrically in the length of the critical path to k, as each ̟bk is

weighted by (essentially) θ#δ
s→k

. For example, an unit increase in ̟bk changes seller’s

payoff only when k lies on the critical path from s to b. In this case, seller’s payoff increases

by θ#δ
s→k

when k �= b and by θ#δ
s→k−1 when k = b.

We apply (8) to single-seller configurations C = (G, {s}), where G is the undirected

network depicted in Figure 3. As the critical path from s = 1 to any other node b in G is

δs→b = (1, 2), the formula (8) boils down to,

x1(C) = θ
�4
b=2(̟b1 +̟b2).

Similarly, for s = 2, the critical paths δs→1 = (2, 1) and δs→b = (2) for b = 3, 4 imply,

x2(C) = θ(̟12 +̟11) +
�4
b=3̟b2.

Finally, for s ∈ {3, 4}, the critical path to any other vertex b �= s is δs→b = (s) and,

xs(C) =
�
b �=s̟bs.
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5 Endogenous networks

Our crucial assumption (see Section 3) that each active link trades information when

matched may lead to irrational transactions. In the simplest network with a single seller

connected to a single buyer, a trade is not compatible with rational behavior if the negative

externality, imposed on the seller by the informed buyer, exceeds the utility of the latter

player from information acquisition. In this case, NBS implies negative payoffs for both

players. Obviously, these players could be better off by never trading but our model

prescribes a transaction for each matched pair. Then, the only way to resolve this conflict

is to permanently delete the common link.

In this section, we will allow agents (social planner) to form (design) communication

structures in a network formation stage that precedes information diffusion. Specifically,

we shall focus on pairwise stable, optimal and efficient networks under different externality

regimes.

Externality regimes. First, we generalize our motivating examples in the Intro-

duction to three different externality scenarios. In each scenario, only player 1 will initially

possess the relevant IG.

A) Positive externalities: Building on the advertisement example a) in Section 1, we

assume that each player (viewer) i ∈ N\{1} experiences the disutility ̟ii from

acquiring information (watching the ad) and exerts the positive externality ̟i1 on

the IG seller (advertising firm). The positive externality of the ad outweighs the

disutility from being exposed to it. Formally,

̟ii ≤ 0, ̟i1 > 0, ̟ik = 0, ̟i1 +̟ii > 0, ∀i, k ∈ N\{1}, i �= k. (9)

B) Negative externalities: Generalizing the example b) of market for information in

Section 1, we assume that each firm i ∈ N\{1} earns the profit ̟ii when acquiring

information from the data broker (player 1) and exerts the negative externality ̟ik

on any other firm k �= i. We assume further that externalities are sufficiently strong,
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i.e. they exceed any intrinsic value,

̟ii > 0, ̟i1 = 0, ̟ik < 0, |̟ik| > max
v
̟vv, ∀i, k ∈ N\{1}, i �= k. (10)

C) No externalities: In the n-player version of the example c), each player i ∈ N has a

positive valuation ̟ii for the IG and there are no externalities,

̟ii > 0, ̟ik = 0, ∀i, k ∈ N\{1}, i �= k. (11)

Our aim is to find (pairwise) stable, optimal and efficient connection structures in each

of these scenarios. First, we need to specify what benefits and costs agents anticipate

from their alternative linking decisions. Benefits, on the one hand, are quite naturally

identified with the payoffs that an agent foresees in the information diffusion stage in

a formed network. Linking costs, on the other hand, are assumed to be positive but

infinitesimally small: every agent bears a cost of each of her links but this cost is orders

of magnitude lower than any payoff she receives in a formed network. This assumption

on connection costs is intuitively appealing and helps eliminate "superfluous" links. We

assume further undirected networks (i.e., two-way information flow), symmetric bargaining

powers θik = 1/2 for all i, k ∈ N = {1, ..., n}, and at least three players (n ≥ 3).

Pairwise stability. There are many approaches to modeling decentralized network

formation. An obvious one is simply to model it explicitly as a non-cooperative game.

Alternatively, one may dispense with the specifics of a noncooperative game and define a

notion of a stable network directly. Jackson et al. (2005) and Mauleon and Vannetelbosch

(2016) are excellent surveys of both approaches. Here, we apply pairwise stability which

is probably the most popular network stability concept. Intuitively, a network is pairwise

stable if no player benefits from severing one of their links and no two players benefit from

adding a link between them, with one benefiting strictly and the other at least weakly.

Pairwise stability is simple and tractable but it is a weak concept that does not eliminate

many implausible networks. Moreover, pairwise stable networks do not always exist.

The next proposition reports, for each scenario, pairwise stable networks and the cor-
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responding payoff x1(C) to the initial seller. This payoff omits the (negligible) linking

costs.

Proposition 5. A pairwise stable network G in the configuration C = (G, {1}) is connected

and in scenario

A) G is the seller-centered star; x1(C) =
�n
b=2̟b1/2.

B) G is a collection a cycles, any two of which sharing at most one node; x1(C) = 0.

C) G is a line where the seller has a single link; x1(C) =
�n
b=2̟bb/2

b−1.

In scenario A, the advertising firm (center of the star) pays ̟i1/2 > 0 to each viewer

(spoke) i ∈ N\{1}. We can think of this arrangement as direct marketing, where the

advertiser communicates directly with potential customers (e.g., via text messages) offering

them promotional codes. In scenario B, all pairwise stable structures, with the cycle

(1, 2, ...., n, 1) as the simplest example, are Eulerian graphs, i.e. have a cycle that goes

through all edges exactly once. Then, each firm satisfies the two paths property and obtains

the information for free. It follows that the seller does not earn any revenue, whereas all

firms suffer the full extent of externalities. Finally, in scenario C, each (re)seller sells the IG

to one buyer only. Hence, all (re)sellers achieve positive prices but the price for the initial

seller is below the revenue earned in the star. For all scenarios, pairwise stable networks

are connected, i.e. information diffuses to all nodes, and the payoff to the initial seller is

well-defined, i.e. unique.

Interestingly, considering the examples in Section 1 as special cases of the three scenar-

ios, we observe that none of the networks depicted in Figure 1 is pairwise stable. In the

tree in example a), each viewer would delete her link to the TV station to save the linking

cost without decreasing her payoff. In example b), any two spokes would form a link in

order to get the IG for free, whereas in example c) the initial seller would delete one of her

links to save the linking costs without reducing her (zero) profits.

Optimality. An important question for a single seller of an IG is which connection

structure - representing, e.g., patent legislation - maximizes the profit from selling this IG.

Formally, we say that the network G is optimal, i.e. profit maximizing for the single seller

s, given the set of prospective buyers N\{s}, if xs((G, {s})) ≥ xs((G′, {s})) for all networks

19



G′ with the set of nodes N . It is clear that optimal networks always exist given that the

set of relevant networks is finite. The following proposition reports the optimal network(s)

for each scenario and the corresponding payoff x1(C) to the initial seller. This payoff is net

of the (negligible) linking costs.

Proposition 6. An optimal network G in the configuration C = (G, {1}) is connected and

in scenario

A) the seller is covered by a cycle and has no other links; x1(C) =
�n
b=2̟b1.

B) G is the seller-centered star; x1(C) =
�n
b=2̟bb/2.

C) G is the seller-centered star; x1(C) =
�n
b=2̟bb/2.

In scenarios B and C with positive consumption values but non-positive externalities,

the seller-centered star is the unique optimal structure. In the context of property rights,

we can think of star networks as a rule that declares illegal any resales of IGs. As a

diametrically opposed provision, the General Public Licence can be interpreted as the

complete (undirected) network that connects all current and prospective possessors of the

IG. The single seller 1 prefers the GPL (complete network Gc) to the traditional copyright

(star network Gs) when,

x1((Gc, {1})) =
�n
b=2̟b1 > x1((Gs, {1})) =

�n
b=2(̟b1 +̟bb)/2 (12)

⇔
�n
b=2̟b1 >

�n
b=2̟bb.

The last inequality holds in Scenario A due to our assumptions in (9). This scenario

illustrates that in information goods markets the strongest copyright protection is not

necessarily the same as profit maximization (see, e.g., Shapiro and Varian, 1999).

Efficiency. Another important consideration related to network formation is ef-

ficiency. Following Jackson et al. (2005), we call a network efficient if it generates the

largest value among all possible networks. When we ignore the linking costs, the value of

a network (for a given set of sellers S ⊆ N ) is easily computed in our context as the sum

20



of all valuations and externalities,9

v(G,S) ≡
�
k∈N xk((G,S)) =

�
b∈B(G,S)

�
k∈N ̟bk, (13)

where the last equality follows by the iterative expansion of (4). A network G is, then,

efficient relative to v(G,S) if v(G,S) ≥ v(G′,S) for all networks G′ with the set of vertices

N . It is clear that there always exists at least one efficient network given that the set of

relevant networks is finite. Alternatively, one can consider the standard notion of Pareto

efficiency. Adapted to our context, network G Pareto dominates another network G′ if

xk((G,S)) ≥ xk((G
′,S)), ∀k ∈ N ,

with at least one strict inequality.

The following proposition reports efficient connection structures and their values (net

of the linking costs) for each scenario.

Proposition 7. An efficient network G in the configuration C = (G, {1}) is in scenario

A) a connected tree with n− 1 links; v(G, {1}) =
�n
b=2(̟b1 +̟bb).

B) the empty network; v(G, {1}) = 0.

C) a connected tree with n− 1 links; v(G, {1}) =
�n
b=2̟bb.

The results in this section illustrate a possible tension between profit maximization,

pairwise stability and efficiency. For example, in scenario C (no externalities), the seller-

centered star maximizes seller’s revenue. Although this network is also efficient, it is not

pairwise stable as only a line satisfies this property. On the other hand, in scenario B

(negative externalities), the empty network is the unique efficient structure, whereas the

seller-centered star maximizes seller’s revenue. Neither network is pairwise stable as the

latter criterion requires a connected network, where all buyers are covered by a cycle.

Our results offer some practical insights into copyright regulations. For example, the

inequalities (12) show that distributing an IG under the GPL tends to be more beneficial

9 In the terminology of Jackson et al. (2005), xk(G,S) is an allocation rule and v(G,S) ≡
�

k∈N
xk(G,S)

is a value function.
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for its creator than the exclusive copyright when the sum of positive externalities exerted

by the consumers on the creator outweighs the sum of consumers’ valuations. This is likely

the case for advertising but also for open source projects. In an open source project (e.g.,

Linux operating system), a lead-developer delivers an initial program to the community

which is free to modify and to distribute it under the same licence terms. As a result, each

contributor (including the lead-developer) acquires for free successive software releases.

Similarly, GPL-like licences may be preferred by IG creators when the latter have direct

access to only few prospective buyers, who in turn are connected to other buyers and so

on. On the other hand, Scenario B in Proposition 7 suggests that some restrictions on

information dissemination (e.g., censorship) may be necessary in order to achieve socially

efficient outcomes in the presence of negative externalities.

6 An application to citation networks

A citation network is a directed graph in which each vertex represents a document and

each directed edge maps a citation from one document to another.10 Academic articles,

court judgements, patents, web pages, etc. can be embedded in a citation graph. A typical

application for citation graphs is the calculation of an impact measure of a document. An

important impact metric is the citation count. For example, Trajtenberg (1990) shows that

patent citations are indicative of the value of an innovation, whereas Hall et al. (2005)

demonstrate that they significantly affect market value of the patent holder. However,

citations exploit only a small portion of information contained in a citation graph. We

apply our model to construct an impact index that takes advantage of the whole structure

of such networks. Intuitively, our method captures the direct and (discounted) indirect

impact of a vertex, i.e., it accounts for citations to this vertex, citations to the citations,

etc. In the context of the information pricing model, we interpret the constructed index as

the total price that an article generates in a citation graph.11

Specifically, we assume that each node i ∈ N in a directed acyclic graph (DAG)

10An illustration of a directed citation graph is provided in Figure 2.
11 In a similar vein, Du et al. (2015) use equilibrium prices in a competitive economy to rank items in a

(citation) network.
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G ={N ,L} creates its own IG (article). This article is then "sold" to all vertices that

cite it, i.e. to all b ∈ N such that ib ∈ L (b ∈ Ni(G)). Each article has some value ̟bb for

the buyer b that cites it and serves as an input, i.e., b can create its own article only after

acquiring (reading) all articles that it cites. In other words, each buyer node resells the

acquired articles after transforming (recombining) them into its own output. The matching

and bargaining in G unfolds as in the original model. We can calculate, then, the impact

index of an article i as the total price that the vertex i obtains from its sale, where we use

i’s bargaining power θib vis-à-vis each buyer b ∈ Ni(G) and ignore any prices that i has

paid to the nodes that it cites.

Proposition 8. For a directed acyclic graph G, the total price that node i obtains from

selling its article is computed by,

pi(G) =
�
b∈Ni(G)

θib {̟bb + pb(G)} , (14)

Hence, the article i is rewarded not just for its direct but also for its indirect citations,

where the weight of the latter decreases geometrically in their geodesic distance from the

node i in graph G. The price index (14) is reminiscent of the formula (7) and it subsumes a

class of centrality measures for (directed and acyclic) graphs. For θik = θ, it can be written

in the vectorial form as,

p = θG{̟ + p} = θG̟ + θGp,

where G is the adjacency matrix of the network G, p = (pi(G))i∈N and ̟ = (̟bb)b∈N . In

this case, (14) belongs to the class of eigenvector-like (or generalized eigenvector) central-

ities defined in Bonacich and Lloyd (2001) by the system c = e + αGc for an adjacency

matrix G, scalar α and vector e. In particular, (14) boils down to the Katz-Bonacich

centrality (e = 1) when,

θ < 1/λmax(G),
�
b∈Ni(G)

̟bb = 1/θ, ∀i ∈ N ,
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and to the eigenvector centrality (e = 0) when,

θ = 1/λmax(G), ̟ii = 0, ∀i ∈ N ,

where λmax(G) is the largest eigenvalue of the adjacency matrix of G.

Centrality measures based on eigenvector methods can be used to rank vertices and

can be also applied to weighted adjacency matrices such as citations across journals or

hyperlinks between webpages. For example, Palacios-Huerta and Volij (2004) find a set

of cardinal properties that axiomatize the invariant method for ranking journals, whereas

Altman and Tennenholtz (2005) identify a set of ordinal properties that fully characterize

the PageRank algorithm for ranking webpages. Both methods generalize the eigenvector

centrality in a similar vein to (14). Although a rigorous discussion of network centralities

and their application to measurement of intellectual influence is beyond the scope of this

work, the interested reader is referred, e.g., to Jackson (2008, Chapter 2.2) and Bloch et

al. (2017).

7 Concluding remarks

We consider an information trading framework, where information has some idiosyncratic

value for its consumers, exerts externalities and is transmitted through links in a (directed)

network. Bilateral trading leads in our model to unique information prices and players’

payoffs in any fixed network. We use these payoffs to analyze a two-stage setting, where a

communication network is formed before information diffuses.

This model has many prospective applications to, e.g., copyright and licensing regu-

lations, internet based commerce (e-commerce), intelligence networks or data brokerage.

For example, we show that an optimal copyright provision may depend on externalities

exerted by buyers on the creator of an IG. In particular, the strongest protection does not

necessarily maximize the total profit for the content creator. Furthermore, our scenario B

suggests that in markets, where firms impose negative externalities on their competitors

if they acquire information, these externalities are not internalized. If sufficiently strong,
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they can cannibalize any benefits from information acquisition. When we allow for de-

centralized link formation in this scenario, we observe that competing firms are able to

obtain information for free but create inefficient networks. Finally, our scenario A suggests

that direct marketing, where businesses communicate directly to customers (e.g., via text

messages with promotional codes), is a more stable arrangement than mediated market-

ing, when the latter does not add value to advertisement. Referral bonus programs and

advertising on social media are other promising areas where the present framework can be

applied.

Appendix

Lemma 1. Assume configuration C with sb, s′b ∈ L(C) for s �= s′ and fix the payoffs

xk(C ⊕ b) for all k ∈ N . Then, the NBS implies prices psb(C) = ps′b(C) = 0 and payoffs

xk(C) = x
sb
k (C) = x

s′b
k (C) = ̟bk + xk(C ⊕ b) for all k ∈ N .

Proof. The NBS (2) applied to the link sb ∈ L(C) with the payoffs from the trade in the

link s′b ∈ L(C) as disagreement values implies,

xsbs (C)−x
s′b
s (C) = θsb(Ssb(C)− x

s′b
s (C)− x

s′b
b (C))

= θsb(xs(C⊕b) +̟bs + xb(C⊕b) +̟bb − x
s′b
s (C)− x

s′b
b (C)),

where we replaced Ssb(C) from its definition (3). By substituting for xsbs (C) and for x
s′b
k (C),

k ∈ sb, from (1), we can write the last equation as,

xsbs (C)− x
s′b
s (C) = xs(C⊕b) +̟bs + psb(C)− (xs(C⊕b) +̟bs) =

θsb(xs(C⊕b) +̟bs + xb(C⊕b) +̟bb − xs(C⊕b)−̟bs − xb(C⊕b)−̟bb + ps′b(C))

⇒ psb(C) = θsb · ps′b(C).

A symmetric condition can be derived for ps′b(C) = θs′b · psb(C). Hence,

psb(C) = θsb · ps′b(C) = θsb · θs′b · psb(C)⇒ psb(C) = ps′b(C) = 0,

25



as θsb, θs′b ∈ (0, 1). The payoffs in C follow, then, from (1). �

Proof. Proposition 1: For a configuration C such that B(C) = L(C) = ∅ (e.g., a con-

figuration with no accessible buyers), xk(C) = 0 for all k ∈ N as no surplus is created

by information trading. When B(C) �= ∅, we assume as our inductive hypothesis that (4)

specifies a unique, order-independent payoff xk(C
′) to each player k in any configuration

C′ such that #B(C′) < #B(C). In particular, in a configuration C′ with B(C′) = {b} and

L(C′) = {sb}, the NBS (2) with zero payoffs as disagreement points results in,

xk(C
′) = xsbk (C

′) = Ik∈sb · θ
sb
k (̟bs +̟bb), ∀k ∈ N .

When at least two links, say sb and s′b, belong to L(C′), Lemma 1 implies,

xk(C
′) = xsbk (C

′) = xs
′b
k (C

′) = ̟bk, ∀k ∈ N .

Importantly, all active links have been assumed to trade with probabilities bounded away

from zero. We prove now a unique, order-independent payoff xk(C) for any configuration

C and player k ∈ N .

(1) Case L(C) = {sb}: The claim follows directly from (1), the NBS (2) and our

inductive hypothesis,

xk(C) = x
sb
k (C) = Ik∈sb · θ

sb
k (̟bs + xs(C⊕b) +̟bb + xb(C⊕b)).

(2) Case #L(C) > 1: We consider sb, s′b′ ∈ L(C) where b �= b′ (the case b = b′ is

covered in Lemma 1). When the link sb trades in C, then xsbk (C) is given by (1),

xsbk (C) = ̟bk + (Ik=s − Ik=b)psb(C) + xk(C⊕b) = (A.1)

̟bk + (Ik=s − Ik=b)psb(C) +̟b′k + (Ik=s′ − Ik=b′)ps′b′(C⊕b) + xk(C⊕{b, b
′}),

where in the second line in (A.1), we applied our inductive hypothesis to expand xk(C⊕b)
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according to (4) for the link s′b′ ∈ L(C ⊕ b). By a similar argument,

xs
′b′

k (C) = ̟b′k + (Ik=s′ − Ik=b′)ps′b′(C) + xk(C⊕b
′) = (A.2)

̟b′k + (Ik=s′ − Ik=b′)ps′b′(C) +̟bk + (Ik=s − Ik=b)psb(C⊕b
′) + xk(C⊕{b, b

′}).

From (A.1) and (A.2), we compute the difference,

xsbk (C)− x
s′b′

k (C) = (Ik=s − Ik=b)D − (Ik=s′ − Ik=b′)D
′, where, (A.3)

D ≡ psb(C)− psb(C⊕b
′), D′ ≡ ps′b′(C)− ps′b′(C⊕b).

From (A.3), we obtain,

xsbb (C) = x
s′b′

b (C)−D, xsbs (C) = x
s′b′

s (C) +D − Is=s′D
′, (A.4)

xs
′b′

b′ (C) = x
sb
b′ (C)−D

′, xs
′b′

s′ (C) = x
sb
s′ (C) +D

′ − Is=s′D.

We can then compute the net surpluses,

Ssb − d
sb
s − d

sb
b = xsbs (C) + x

sb
b (C)− (x

s′b′

s (C) + xs
′b′

b (C)) = −Is=s′D
′, (A.5)

Ss′b′ − d
s′b′

s′ − ds
′b′

b′ = xs
′b′

s′ (C) + x
s′b′

b′ (C)− (x
sb
s′ (C) + x

sb
b′ (C)) = −Is=s′D,

and the NBS (2) payoffs,

xsbb (C) = xs
′b′

b (C)− (1− θsb)Is=s′D
′, xsbs (C) = x

s′b′

s (C)− θsbIs=s′D
′, (A.6)

xs
′b′

b′ (C) = xsbb′ (C)− (1− θs′b′)Is=s′D, xsbs′ (C) = x
sb
s′ (C)− θs′b′Is=s′D.

For the case s �= s′, the claim xsbk (C) = xs
′b′

k (C) for k ∈ {s, s′, b, b′} follows immediately

from (A.6) as Is=s′ = 0. When s = s′, we compare the differences xsbb (C) − x
s′b′

b (C) and

xs
′b′

b′ (C) − x
sb
b′ (C) in (A.4) and in (A.6), which leads to the system of two equations in D
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and D′ and its unique solution,






D = (1− θsb)D
′

D′ = (1− θs′b′)D
⇒ D′ = D = 0,

because θsb, θs′b′ ∈ (0, 1). Hence, we have shown that xsbk (C) = xs
′b′

k (C) for all k ∈

{s, b, s′, b′} and any sb, s′b′ ∈ L(C) with sb �= s′b′. For k /∈ {s, b, s′, b′} order independence

follows from our inductive hypothesis and (1),

xsbk (C) = ̟bk + xk(C⊕b) = ̟bk +̟b′k + xk(C⊕{b, b
′}) = ̟b′k + xk(C⊕{b

′}) = xs
′b′

k (C).

Hence, without the loss of generality, we can assume, that sb ∈ L(C) trades in C and

compute the payoff to player k ∈ N by (1),

xk(C) = x
sb
k (C) = ̟bk + xk(C⊕b) + (Ik=s − Ik=b)psb(C),

where psb(C) is computed by (1) and order independence,

xsbb (C) = x
s′b′

b (C)⇒ psb(C) = ̟bb + xb(C⊕b)−̟b′b − xb(C⊕b
′).

Hence, xk(C) is a linear combination of payoffs in configurations with one more buyer.

These payoffs are unique by our inductive hypothesis. We note that none of the arguments

in this proof depends on particular matching or agreement probabilities as long as these

probabilities are bounded away from zero. �

Proof. Proposition 2:

Case 1: sb, s′b′ ∈ L(C) and sb �= s′b′. If b �= b′, then the claim follows from Proposition

1 and (1):

xsbb (C) = xsb
′

b (C)⇒ ̟bb + xb(C⊕b)− psb(C) = ̟b′b + xb(C⊕b
′) (A.7)

⇒ psb(C) = ̟bb + xb(C⊕b)−̟b′b − xb(C⊕b
′).
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If b = b′ (and, hence, s �= s′) then psb(C) = 0 by Lemma 1 and (5) yields correctly:

psb(C) = ̟bb + xb(C⊕b)−̟bb − xb(C⊕b) = 0.

Case 2: L(C) = {sb}: First, we compute xs(C) by (2) with dsbs (C) = d
sb
b (C) = 0,

xs(C) = θsbSsb(C) = θsb(̟bs + xs(C⊕b) +̟bb + xb(C⊕b)). (A.8)

Then, the price psb(C) is readily computed from (4),

psb(C) = xs(C)−̟bs − xs(C⊕b) = θsbSsb(C)−̟bs − xs(C⊕b). (A.9)

Finally, in order to prove psb(C) = psb(C⊕b
′) when b �= b′, we use order independence,

xsbb (C) = x
s′b′

b (C)⇒ xb(C⊕b) +̟bb − psb(C) = xb(C⊕b
′) +̟b′b,

and expand xb(C⊕b) and xb(C⊕b
′) by (4),

xb(C⊕{b, b
′}) +̟b′b +̟bb − psb(C) = xb(C⊕{b

′, b}) +̟bb − psb(C⊕b
′) +̟b′b.

From the last equation, we obtain psb(C) = psb(C ⊕ b
′).

�

Proof. Proposition 3: By order independence (Proposition 1), the price that b pays

for information is independent of the order of trades. Hence, we compute this price in

configuration C′ where two neighbors of b but not b herself have acquired information. Such

a configuration can be reached by information diffusion from the original configuration C

due to b’s two paths property. By Lemma 1, the price that b pays in configuration C′ is zero.

�

Proof. Proposition 4: For a configuration C = (G, {s}) with the single seller s, we

define the configuration Cb = (Gb, {s}), where Gb is a (possibly disconnected) subnetwork of

G containing the seller s and the largest set Bb ⊆ B ≡ B(C) of buyers that are accessible in
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G from {s} via b only,

Bb ≡ {k ∈ B : b ∈ δs→k(G)}.

We define further the set of buyers Ddi ⊆ B(C) at the "δ-distance" d ≥ 1 from i ∈ N ,

Ddi ≡ {k ∈ B : #δ
i→k = d}.

Moreover, to ease the notation, we define the set Ψ ≡ Ns(G) ∩D2s of direct neighbors of s

accessible from {s} by one path only. If Ψ= ∅, then each neighbor b ∈ Ns(G) of s satisfies

the two paths property and gets the IG for free. Hence, the recursive expansion of (4) yields,

xs(C) = xs(C⊕b) +̟bs = ... =
�

b∈B
̟bs,

which confirms (4) because δs→b = (s) for all b ∈ Ns(G) implies δ
s→k = (s) for all k ∈ B.

If Ψ�= ∅, we expand (4) recursively for each b ∈ Ψ,

xs(C) = xs(C⊕b) +̟bs + psb(C) = ... (A.10)

= xs(C⊕Ψ) +
�

b∈Ψ
̟bs +

�

b∈Ψ
psb(C).

where we used the fact that psb(C) does not depend on the configuration (by the iterative

application of psb(C) = psb(C ⊕ b
′) for b �= b′ proved in Proposition 2). Specifically, we

compute psb(C) = psb(C
b) in configuration Cb with the single active link sb from (5),

psb(C) = θ · Ssb(C
b)−̟bs − xs(C

b⊕b)

= θ


xb(C

b⊕b) + xs(C
b⊕b) +̟bb +̟bs

�
−̟bs − xs(C

b⊕b),
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and substitute the computed prices into (A.10),

xs(C) = xs(C⊕Ψ) + θ
�

b∈Ψ
Ssb(C

b)−
�

b∈Ψ
xs(C

b⊕b) (A.11)

=
�

b∈B\Ψ

̟bs + θ
�

b∈Ψ
Ssb(C

b)−
�

b∈Ψ

�

v∈Bb\b

̟vs

= θ
�

b∈Ψ



xb(C

b⊕b) + xs(C
b⊕b) +̟bb +̟bs

�
+
�

b∈D1s

̟bs.

The second line in (A.11) follows by (4) because seller s gets the price of zero from buyers

in B(C ⊕Ψ) = B\Ψ and never trades with buyers in B(Cb⊕ b) = Bb\b for each b ∈ Ψ. The

third line follows because B\Ψ = (∪b∈ΨBb\b)∪D1s . In order to evaluate (A.11), we simplify

notation by defining ρs→bk ≡ min{#δs→k,#δs→b − 1) and calculate first,

θ
�

b∈Ψ
xb(C

b⊕b) =
�

b∈Ψ

�

v∈Bb\b

�
�

k∈δb→v

θ · θρ
b→v
k ·̟vk

	

=

�

v∈∪b∈ΨBb\b

�
�

k∈δs→v

θρ
s→v
k ·̟vk − θ̟vs


, (A.12)

by applying (8) to each xb(C
b ⊕ b). Then, we evaluate the remaining term in (A.11),

θ
�

b∈Ψ



xs(C

b⊕b) +̟bb +̟bs
�
+
�

b∈D1s

̟bs

= θ
�

b∈Ψ

�

v∈Bb\b

̟vs + θ
�

b∈Ψ
{̟bb +̟bs}+

�

b∈D1s

̟bs

=
�

v∈∪b∈ΨBb\b

θ̟vs +
�

v∈Ψ∪D1s

�
�

k∈δs→v

θρ
s→v
k ·̟vk


. (A.13)

The second line in (A.13) follows by (4) because seller s never trades with buyers in B(Cb⊕

b) = Bb\b for each b ∈ Ψ. The third line follows by the fact that δs→v = (s, v) and ρs→vs =

ρs→vv = 1 for each v ∈ Ψ and δs→v = (s) and ρs→vs = 0 for each v ∈ D1s . Then, the sum of

(A.12) and (A.13) yields the claim because B = (∪b∈ΨB
b\b)∪ Ψ ∪D1s . �

Proof. Proposition 5. Pairwise stable (PS) structures in the relevant scenarios are

shown below. The corresponding seller’s payoffs follow then from (8).

A) (positive externalities): First, we show that PS networks (PSN) are connected. For

the sake of contradiction, suppose there is no path between the initial seller 1 and some
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node i ∈ N\{1}. Then, i never obtains the IG and will not maintain any (costly) links.

Hence, i is an isolated singleton. But this is incompatible with PS as 1 and i would benefit

by creating the link 1i with the value ̟ii +̟i1 > 0 to share among themselves.

Secondly, we show that there are no links in a PSN between prospective buyers v,w ∈

N\{1}. To see this, we use the order independence and consider the configuration C that

arises after the initial seller (and only this player) has traded with all his linked neighbours.

Then, the surplus for any link vw, v,w ∈ N\{1}, when v acts as seller, verifies,

Svw(C) = ̟wv + xv(C ⊕w) +̟ww + xw(C ⊕w) ≤ 0,

as only non-positive values and externalities are created for v and w in C or in any ensuing

configuration due to the assumption in (9) that ̟vw ≤ 0 for all v, w ∈ N\{1}. Hence, v

and w would benefit from the deletion of vw.

B) (negative externalities): The proof of connectivity is the same as in scenario A.

Next, we show that trade across a bridge in this scenario leads to negative payoffs to the

involved players. For a bridge sb consider the configuration C where sb is the only active

link. Then, the surplus,

Ssb(C) = ̟bs + xs(C ⊕ b) +̟bb + xb(C ⊕ b) = ̟bs +̟bb + xb(C ⊕ b),

is negative by our assumption of sufficiently strong externalities, |̟ik| > maxi̟ii for all

i, k ∈ N\{1} : i �= k and by Proposition 4, which decomposes xb(C ⊕ b) into a (weighted)

sum of (negative) externalities. Given their disagreement points of zero, the NBS implies

the share of Ssb(C)/2 ≤ 0 to both s and b.

We show now that a connected collection G of cycles, any two of which sharing at most

one node, is PS. As every buyer node in G is covered by a cycle, all of them satisfy the two

paths property and get the IG for free. None of the players will then benefit from adding

a link. On the other hand, if node i that is covered by the cycle (i, v, ..., w, i) cut one of

its links, say iw, then iv would become a bridge. Otherwise, there would be a node r and

a cycle (i, v, ..., r, i). But then, two cycles in G, (i, v, ..., w, i) and (i, v, ..., r, i), would share
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two nodes, i and v, which contradicts the definition of G. Hence, we conclude that G is PS

because adding or deleting links to G decreases the payoffs to the involved nodes. Any other

structures cannot be PS as they either contain a bridge or allow for link deletion without

destroying the two paths property of some node.

C) (no externalities): We show first that the line Gl with the set of links Ll = {i(i+1),

i = 1, ..., n−1} is pairwise stable. First, we note that a node that deletes one of its links in

Gl either looses the access to the IG or to the (resale) market. Given symmetric bargaining

powers and strictly positive valuations, link deletion results then in lower payoffs to the

involved nodes. On the other hand, if a new link ik, i < i+1 < k, is created then i acts as

the seller whenever information flows through this link. However, i will be forced to sell at

the price of zero to k and to i+1 as these players satisfy the two paths property. Although

i > 1 will pay now a reduced price to i− 1 for the IG, this reduction will compensate only

for the half of the loss of the resale value. Hence, the overall profit to i will be lower than in

the line. This violates the condition on link addition in the definition of pairwise stability.

Secondly, we show that any PS network is a line, where node 1 has one link: For the

single initial seller, node 1, we note that in a PSN it holds for i = 1:

1) For any link ik, where k ∈ {i+ 1, ..., n} is a buyer, the price paid by k to i for

the IG is strictly positive as otherwise i would delete the link ik.

2) Node i has only one link, say with the player i+1. If there existed two links, ij

and ik for j �= k, then by 1), j and k would pay strictly positive prices for the IG. This is,

however, incompatible with PS as j and k could get the IG for free by creating the link jk.

We can repeat the arguments 1)− 2) for each IG reseller i ∈ {2, ..., n− 1}. �

Proof. Proposition 6. Optimal structures in the relevant scenarios are shown below.

The corresponding seller’s payoffs follow then from (8).

A) (positive externalities): The maximum value that the seller can extract in this sce-

nario is the sum ̟21+...+̟n1 of positive externalities. This is only possible if the network

is connected (i.e. information diffuses to all players) and when there are no positive trans-

fers from the seller to the buyers. The latter condition is satisfied when all buyers connected

to the seller are covered by a cycle as in this case they acquire the IG for free. Moreover,
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the seller can save linking costs by connecting to just two such buyers.

B) (negative externalities): See scenario C and note that, by (8), the seller in the

seller-centered star does not internalize any share of the negative externalities.

C) (no externalities): First, we note that (8) simplifies to the following expression when

̟ki = 0 for all i �= k,

xs(C) =
�

b∈B(C):b∈δs→b

̟bb · θ
#δs→b−1.

Hence, an optimal network must satisfy two properties: Each buyer b must belong to the

critical path δs→b (in order to extract a share of ̟bb > 0) and this path must be as short as

possible (in order to reduce the discounting by θ#δ
s→b−1). These properties imply a direct

link from s to each buyer b. Moreover, no connections between buyers should exist. For if

such a link existed, then the involved buyers would satisfy the two paths property and could

not belong to a critical path starting at s. The only network with these characteristics is

the seller-centered star . �

Proof. Proposition 7. Efficient structures in the relevant scenarios are shown below.

The corresponding network values follow then from (13).

A) (positive externalities): As each buyer b creates the value ̟bb+̟b1 > 0 by acquiring

the IG, an efficient network must be connected (i.e. information diffuses to all players).

This connectivity should be achieved with the smallest number of links in order to save

linking costs.

B) (negative externalities): As each buyer b creates the value ̟bb +
�
k �=b̟bk < 0

by acquiring the IG, an efficient network must be fully disconnected (i.e. no information

diffusion).

C) (no externalities): As each buyer b creates the value ̟bb > 0 by acquiring the IG,

an efficient network must be connected (i.e. information diffuses to all players). This

connectivity should be achieved with the smallest number of links in order to save linking

costs. �

Proof. Proposition 8: First, we show that all nodes in G with some outgoing links sell

their articles in the information trading stage. For each node i, we define the subgraph

Gi = {Ni,Li} that starts with i and includes all nodes accessible from it in G. As Gi is
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also a DAG, it has a (not necessarily unique) topological ordering (v1, ..., v#Ni) of the set

of its nodes, i.e., for each link vsvk ∈ Li, we have s < k. An inductive algorithm to find

such an ordering works as follows: Start with the graph G1i = {N
1
i ,L

1
i } = Gi and the empty

ordering O. For each k = 1, 2...,#Ni repeat the following steps: If N k
i �= ∅ find the set

{s ∈ N k
i : ∄vs ∈ L

k
i } of nodes in Gki with no incoming links. As each Gki is a DAG, the

set of such nodes is non-empty. Append these nodes (in any order) to O and remove them

from Gki . This leads to the subgraph G
k+1
i = {N k+1

i ,Lk+1i } of Gki . This procedure ends after

a finite number of steps (when N k
i = ∅) with a topological ordering O.

When only i but none of its followers in O has created an article, the existence of a

topological ordering implies that the trading process in Gi only stops after every other node

k ∈ Ni has produced and sold its article to all neighbor nodes in Nk(Gi). To see this, we

observe that each node vk in the topological ordering O = (v1, ..., v#Ni) is able to produce

and sell its article when all its predecessors vs, s < k, in {vs : vsvk ∈ Li} have sold their

articles to vk. Hence, if vk is unable to produce its output it is because vk has not yet

traded with all of its predecessors in {vs : vsvk ∈ Li}. But then, either k can trade with the

missing predecessors or at least one of them has not yet created its IG. We take first such

predecessor in O and repeat the above argument. Eventually, we will reach the first node

v1 = i, which, by construction of Gi, already possesses its article. Hence, at least one pair

can trade in Gi whenever not all nodes have sold their articles to their neighbor successors.

Secondly, we have to show that order independence holds in the present context and it

leads to unique payoffs. The proof follows the steps of the proof of Proposition 1 but it

requires additional notation to account for several IGs (articles) traded in Gi. For the sake

of brevity, we omit here this mechanical exercise.

Finally, the pricing formula (14) is a direct analogue of (7) in the current context of

directed graphs and multiple IGs (articles) that do not exert externalities. As each node s is

the unique seller of her article, the relevant network for trading this article is the s-centered

star and the critical path to any buyer b ∈ Ns(G) in this star is δs→b = (s, b). The formula

(14) follows then from the arguments below the formula (7). �
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Figure 1: Networks with a single information seller (dark node 1) and three prospective

buyers (light nodes 2-4). Solid lines - information transmission links, dotted lines - positive

externalities, dashed lines - negative externalities.
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Figure 2: Critical paths in a directed (citation) graph: δ71→9232 = (71, 3412, 7149),

δ71→7565 = (71).

Figure 3: Two paths property (TPP): Buyer k ∈ {3, 4} satisfies TPP with respect to

any single seller i �= k. Buyer 1 does not satisfy TPP with respect to any single seller i �= 1.

Buyer 2 satisfies TPP with respect to k ∈ {3, 4} but not with respect to 1. Critical paths:

δ1→v = (1, 2) for all v ∈ N\{1} and δv→w = (v) for v ∈ {3, 4} and w ∈ N .

40


