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Abstract

We consider the problem of allocating courses to students in post-secondary institu-

tions. We propose a mechanism that assigns course seats based on student preferences

and respects course priorities. This mechanism uses fake money and competitive equi-

librium to allocate courses without transfers and has desirable theoretical properties

in terms of stability, e�ciency, fairness, and strategy-proofness. In simulations draw-

ing from real-world university data, we demonstrate that its outcomes improve student

satisfaction and allocation fairness over the outcomes of several celebrated mechanisms.
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1 Introduction

Every academic term, over 6,500 post-secondary institutions across the United States assign

course schedules to a total of nearly twenty million students.1 Based on timing and pre-

requisites, the number of schedules to which students can possibly be assigned in a given

semester is limited. Further, students' course preferences are heterogeneous. In the face of

room size and teaching constraints, university registrars use factors such as student seniority

and home department to complete the challenging task of deciding how to allocate seats in

over-demanded courses.

In this paper, we approach the task of allocating course schedules to students in the

context of a many-to-many matching problem with heterogeneous student preferences and

course priorities. We propose a novel deterministic allocation mechanism, the Pseudo-Market

with Priorities (PMP) mechanism, that uses fake money and competitive equilibrium to

allocate objects to agents without transfers. This mechanism elicits student preferences for

course schedules, assigns almost equal budgets to students, and computes an approximate

competitive equilibrium allocation and priority-speci�c prices. The equilibrium prices respect

the priority structure by setting a �cuto�� priority level for each course, where students at

the cuto� pay a non-negative price, students above the cuto� pay zero price, and students

below the cuto� cannot a�ord the course.

The PMP mechanism delivers a small market-clearing error and has several desirable

theoretical properties. In particular, in an environment where each course's capacity equals

the number of assigned seats, the PMP assignment ensures that no student wants to drop

a course or enroll in a subset of courses without violating course priorities or capacity con-

straints (approximate stability). Keeping the same number of assigned seats, it is not possible

to reassign course seats to a group of students, bene�ting some members and hurting none,

while ensuring that courses respect course priorities to the same degree as the PMP outcome

(approximate priority-constrained e�ciency). In addition, the outcome limits envy among

students; that is, if a student envies another student who has the same or a lower priority

level for each course, by removing a single course from the other student's schedule, envy

is eliminated (schedule envy bounded by a single course). Finally, we show that students

cannot manipulate the PMP mechanism in large populations (strategy-proof in the large).

To better guide practitioners in the course allocation process, we compare the PMP mech-

1Based on National Center for Education Statistics, 2017-2018.
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anism with several celebrated mechanisms used in practice. First, we consider the Deferred

Acceptance mechanisms with a single tie-breaking and multiple tie-breakings (denoted as

DA and DA(m), respectively). These mechanisms allocate courses to students by extending

the seminal Gale-Shapley algorithm (Gale and Shapley, 1962) to many-to-many matching

with additive student utilities, where priority ties are resolved via either a single tie-breaking

or multiple course-speci�c tie-breakings. The Deferred Acceptance mechanism is considered

the gold standard in the matching literature, with many practical applications including

matching medical residency to hospitals, school choice, and job matching (see Roth, 2018).

Second, we consider a mechanism closely resembling the one currently used in practice.

Students select courses in order of seniority (with ties broken randomly), and priority struc-

tures based on student major/department/college are enforced by setting aside seats in each

course. Top US universities that closely follow this process include Princeton, Johns Hop-

kins, Duke, Vanderbilt, Washington University in St. Louis, Columbia, Notre Dame, and

Carnegie Mellon.2 We call this mechanism the Random Serial Dictatorship with set-asides

(RSD).3 In practice, the number of set-asides is set large at the beginning of the course allo-

cation process. After course registration, university departments relax set-aside constraints

to ensure full course enrollment. We do not model this period or the process of relaxing

set-asides. Instead, we calculate the optimal set-asides that a university registrar should set

at the beginning of the process if set-asides cannot be changed. Hence, one should interpret

our simulation results (described below) as a comparison of the four theoretical mechanisms

rather than an evaluation of the actual course allocation mechanism used in practice.

Using data on course allocation from a private institution in the mid-Atlantic region,

we calibrate a student utility model and compare the performance of the four mechanisms

2The listed universities are in the top 30 of the US News Best National University Ranking. In general,
however, there is some heterogeneity in how university registrars assign course seats to students. Some
universities use two passes (e.g., UCLA), allowing students to only register for a limited number of courses
in the �rst pass. Seniority can be based on academic year (e.g., Carnegie Mellon), number of earned credits
(e.g., University of North Carolina), or time to graduation (e.g., Washington University in St. Louis). Some
universities use priorities (e.g., Dartmouth College) or course reserves (e.g., Vanderbilt) to determine how
to enroll students, whereas others delegate the decision to departments (e.g., Cornell). At some universities,
only a few classes are oversubscribed (e.g., Caltech), while at others, course allocation is rather congested
(e.g., Berkeley).

3The term Random Serial Dictatorship has been used in the matching literature since Shapley and Scarf
(1974). The mechanism has little to do with real �dictatorship,� though. The main idea behind the name is
that the student with the highest priority is like a dictator who can choose any schedule that he/she wants.
Then, the second-highest priority student becomes the dictator, chooses any schedule that he/she wants
from the remaining course seats, and so on.
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described above using simulations in terms of student utilities, the standard deviation of

student utilities across students, and the number of students who experience schedule envy.

The �rst metric measures the satisfaction of students from course allocation. The two other

metrics measure the fairness of course allocation.

The simulations show that PMP delivers the highest mean student utility across all years

of study. 1223 of 1565 �rst-year and 734 of 1611 second-year students received di�erent

schedules in the PMP and RSD mechanisms, with average improvements in student utility

of 9% and 7%, respectively. Changes are smaller for more senior students. 307 of 1422

third-year and 62 of 1425 fourth-year students received a di�erent schedule, with average

improvements of 7% and 10%, respectively. The DA and DA(m) mechanisms only slightly

improve the mean student utility for years 2-4 compared to the RSD benchmark. For �rst-

year students, DA and DA(m) perform worse than the RSD benchmark. This results from

the presence of many course seat reservations for �rst-year students in the RSD mechanism.

In addition to delivering high student utility, the PMP mechanism decreases the standard

deviation of student utilities for almost all years of study compared to the RSD benchmark.

The largest reduction occurs for �rst-year students (11.16%); the e�ects for second and

third-year students are smaller (2.92% and 0.64%, respectively). For fourth-year students,

the standard deviation slightly increases (0.05%). The standard deviation of student utilities

for the DA mechanism is almost the same as in the benchmark for all years of study (the

change is less than 1.5%). The relative values of the standard deviation of student utilities

for the DA(m) mechanism are between the values of the DA and RSD mechanisms with the

maximum decrease of 9.79% for �rst-year students. Among all four mechanisms, the PMP

mechanism also results in outcomes in which individual students experience the least amount

of envy towards students of the same or lower priority. Also, the share of such students is

the smallest for PMP outcomes. Overall, our simulations show that the PMP mechanism

delivers a more satisfactory and fair solution to the course allocation problem compared to

the other three mechanisms.

Literature review. This paper contributes to the literature analyzing the assignment

of courses to students. Hylland and Zeckhauser (1979) �rst proposed the use of fake money

and competitive equilibrium to randomly allocate objects to agents without transfers through

what are referred to as pseudo-market (competitive) mechanisms. An important advantage

of pseudo-markets is that they elicit the participants' cardinal preferences, allowing them
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to allocate objects more e�ciently than is possible with most ordinal mechanisms (e.g., the

deferred acceptance mechanism). He, Miralles, Pycia, and Yan (2018) incorporate a priority

structure into pseudo-markets and analyze random mechanisms with an emphasis on unit-

demand settings such as school choice.4 Echenique, Miralles, and Zhang (2021) and Nguyen,

Nguyen, and Teytelboym (2021) also study a pseudo-market solution to random allocation

problems with various complex constraints. Pycia (2021) provides an excellent survey of the

use of pseudo-markets for random allocations in environments without transfers.5

In contrast to the studies cited above, the present paper considers only deterministic

mechanisms and emphasize many-to-many matching problems such as undergraduate course

allocation. For deterministic assignments, Budish (2011) introduces the idea of competitive

markets that might not exactly satisfy the market clearing condition. Budish proposes the

approximate competitive equilibrium from equal incomes mechanism, which is strategy-proof

in the large, �nds an allocation that bounds student envy by one course, and is approximately

Pareto-e�cient. This mechanism was successfully implemented at Wharton Business School

and Columbia Business School (see Budish, Cachon, Kessler, and Othman, 2017; Budish and

Kessler, 2022).6 In this context, a key contribution of the present study is to extend Budish's

mechanism to many-to-many matching settings with course priorities, an important feature

of the undergraduate course allocation problem.

Two recent papers also analyze deterministic assignments in many-to-many settings. In

a recent contribution, Nguyen and Vohra (2022) establish the existence of a competitive

equilibrium when all agent preferences satisfy a novel property of geometric substitutes,

which is a strict generalization of gross-substitutes property (see Kelso and Crawford, 1982).

When there is an upper limit on the number of goods k that can be acquired by an agent, by

introducing a perturbation in agent utilities, they also establish that there always exists an

4He, Miralles, Pycia, and Yan (2018) also explain how their results can be extended to random allocations
in many-to-many settings with additive utility.

5Budish, Che, Kojima, and Milgrom (2013) and Akbarpour and Nikzad (2020) investigate the implemen-
tation of a random allocation mechanism by randomizing over feasible integer allocations. Nguyen, Peivandi,
and Vohra (2016) relax the requirement of strategy-proofness and design a random allocation mechanism
that is ordinally e�cient, envy-free, and weakly strategy-proof. This mechanism might also violate each
course's capacity constraint, but by no more than the size of one student's course schedule. These appealing
theoretical properties led to the implementation of the mechanism at the Technical University of Munich
(see Bichler and Merting, 2021).

6Budish and Cantillon (2012) draw on theory and �eld data to argue that the properties of a non-
strategy proof course allocation mechanism used at Harvard Business School are superior to those of the
serial dictatorship. Also, Rusznák, Biró, and Fleiner (2021) analyze the course allocation mechanism at the
largest university in Hungary.
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approximate competitive equilibrium with good-by-good clearing bound equal to k− 1. The

good-by-good bound dominates the aggregate market-clearing bound of Budish (2011) when

preferences are close substitutes, whereas the aggregate market-clearing bound dominates

when student preferences are close complements. Though our main theoretical results follow

the aggregate market-clearing bound approach, we ensure in our simulations to �nd an

approximate competitive equilibrium allocation in which no courses are oversubscribed by

more than k − 1 seats.

As in the previous paper, Lin, Nguyen, Nguyen, and Altinkemer (2022) analyze de-

terministic allocation mechanisms through approximate competitive equilibrium with the

good-by-good bound. They establish the existence of an approximate competitive equilib-

rium that satis�es stability and fairness properties similar to the one analyzed in this paper.

We additionally establish that our mechanism is approximately priority-constrained e�cient

and strategy-proof in the large (see Azevedo and Budish, 2019), while Lin, Nguyen, Nguyen,

and Altinkemer (2022) contributes to the analysis of matchings under complex feasibility

constraints (Echenique, Miralles, and Zhang, 2021; Kamada and Kojima, 2023). We are

also di�er in our applications. While they provide an interesting analysis of how to reassign

season tickets to families using arti�cially generated data, we address a larger-scale problem

of allocating course seats to students based on real-world university data.

Our paper also compares the performance of our pseudo-market mechanism with the

performance of the deferred-acceptance algorithm with single- and multiple tie-breaking in a

many-to-many matching setting. Both versions of the mechanism were previously studied in

the matching literature in the context of schools choice (Abdulkadiro§lu, Pathak, and Roth,

2009; Abdulkadiro§lu, Che, and Yasuda, 2015; Erdil and Ergin, 2008). These papers combine

theory and simulations to show that single tie-breaking has better welfare properties.

The remainder of the paper is organized as follows. We introduce the model in Section

2 and investigate the properties of the PMP mechanism in Section 3. Simulation results

are presented in Section 4. We o�er concluding remarks in Section 5. Appendices A and

B present proofs, Appendix C describes how we calibrate a simple student utility model,

Appendix D provides additional simulations. Finally, Supplementary Materials provides

more details on calibration and presents additional results for a common priorities setting.7

7Supplementary Materials can be accessed online through the link: https://www.dropbox.com/s/

vnkug7eqontpj7p/Supplementary-Materials.pdf?dl=0.
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2 Environment

Course allocation is a many-to-many matching problem described by the tuple (S, C, Q, V,R).

� S = {1, ..., S} is a set of students; in reference to students, we use she/her pronouns.

� C = {1, ...,M} is a set of courses.

� Q = (q1, ..., qM) is a vector of course capacities; each c can enroll at most qc students.

� V = (≿1, ....,≿S) is a vector of student preferences over course schedules. Students are

typically restricted to a set of permissible course schedules due to factors such as course

meeting times and prerequisites. Each student can take at most one seat in any course

and k total courses. We assume that these restrictions are incorporated into student

preferences, and, for simplicity of exposition, that 1 ≤ k ≤ M/2. Our speci�cation

permits general substitutability and complementarity of preferences over courses. We

also assume that student preferences over permissible course schedules are strict.

� R = {rs,c}s∈S,c∈C is a course priority structure. Each rs,c ∈ R ≡ {1, ..., R}, R ≥ 1,

speci�es the level of priority for each student s and course c, with a larger number

meaning a higher level of priority. The priority levels need not be distinct and could

be the same for multiple students.

We consider deterministic allocations of courses to students. An allocation x = (xs)s∈S

assigns a course schedule to each student, where xs ⊆ C for each s ∈ S. For ease of notation,
we view the schedule xs as both a set of courses assigned to student s and a vector from the

set {0, 1}M . Allocation x is feasible if
∑

s∈S xs,c ≤ qc for each c ∈ C; that is, no course is

assigned a greater number of students than its capacity if a feasible allocation. Allocation

x is individually rational if, for any s ∈ S, xs = max⪰s{x′
s : x′

s ⊆ xs}; that is, student s

does not want to drop any of the assigned courses. A pair (s, C) of student s ∈ S and a

subset of courses C ⊂ C is a block of x if C = max⪰s{x′
s : x′

s ⊆ xs ∪ C}, C ̸= xs, and for

each c ∈ C such that c /∈ xs, we have that either there is a student s′ ∈ S with c ∈ xs′

and rs′,c < rs,c or
∑

s∈S xs,c < qc; that is, there is a block if a student is willing to replace

the current schedule with a new one, and for each course in the new schedule that was not

previously assigned, there is a lower priority student who is assigned a seat in the course or

the course has available seats.

7



We evaluate allocations based on stability, e�ciency, and fairness. An allocation x is

stable if it is feasible, individually rational, and admits no blocks (see Roth and Sotomayor,

1990; Echenique and Oviedo, 2006). As we explain in the next section, we analyze approx-

imate market equilibria, for which the market-clearing condition is satis�ed with a small

error. To account for that, we use an approximate version of stability.

De�nition 1. An allocation x is approximately stable if it is stable in the environment

with a capacity of q′c =
∑

s∈S xs,c for each course c ∈ C.8

The relationship between approximate stability and stability is similar to the relationship

between Pareto e�ciency and approximate Pareto e�ciency introduced by Budish (2011).

An allocation y Pareto dominates an allocation x if there is at least one student who strictly

prefers her course schedule in y and all other students weakly prefer their course schedules

in y. If y Pareto dominates x, we say that x has a Pareto improvement. An allocation is

Pareto e�cient if there are no Pareto improvements. An allocation is approximately Pareto

e�cient if there is no Pareto improvements with the number of assigned seats for each course

equal to the number of assigned seats in the current allocation.

In our setting, a meaningful notion of e�ciency should also account for course priorities.

Following Schlegel and Mamageishvili (2020), we extend course priorities over individual stu-

dents to course priorities over subsets of students using the �rst-order stochastic dominance

relation. We say that y dominates x for course c, and write yc ⪰c xc, if for all r ∈ R we have

that
∑

s:rs,c≥r ys,c ≥
∑

s:rs,c≥r xs,c. Using this de�nition, we consider the following criterion

of constrained e�ciency.

De�nition 2. An allocation x is approximately priority-constrained e�cient if for

each assignment y that Pareto dominates x and has the same total number of assigned seats�∑
s∈S ys,c =

∑
s∈S xs,c for all c ∈ C�there is a course c′ ∈ C for which yc′ ⪰̸c′ xc′ .

In environments without priorities, De�nition 2 reduces to the approximate Pareto e�ciency

used by Budish (2011). The requirement that any Pareto improvement must have the same

total number of seats assigned accounts for the possibility that the market-clearing condition

8A related concept is justi�ed course envy. Allocation x prevents justi�ed course envy if there are no
students s, s′ ∈ S and course c ∈ C such that rs,c > rs′,c, c /∈ xs, c ∈ xs′ and c ∈ max⪰s{x′

s : x′
s ⊆ xs ∪ c}.

The absence of justi�ed course envy prevents envy towards students of a lower priority, but does not account
for individual rationality and the possibility of envy towards several students assigned to several courses.
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is satis�ed with a small error. If this requirement is dropped, our de�nition coincides with

the priority-constrained e�ciency introduced by Schlegel and Mamageishvili (2020).

The seminal measure of fairness is envy-freeness, as introduced by Foley (1967): an

allocation x prevents schedule envy if there are no students s, s′ ∈ S such that xs′ ≻s xs.

However, without using lotteries, we cannot hope to allocate courses in a completely envy-free

way among students (e.g., if two students have the same priorities and the same preferences

over all courses). Extending the notion originally proposed by Budish (2011), we consider a

more permissive concept of schedule envy bounded by a single course among students of the

same or lower levels of priority (see also Lin, Nguyen, Nguyen, and Altinkemer, 2022).

De�nition 3. An allocation x has schedule envy bounded by a single course among

students of the same or lower levels of priority if, for any s, s′ ∈ S such that rs,c ≥ rs′,c for

all c ∈ C, either xs ≿s xs′ or there exists some course c∗ such that xs ≿s (xs′ \ {c∗}).

This de�nition provides a criterion of fairness for students weakly ordered in the same way

across all course priority orders and bounds envy among such students in a minimal way.

Allocations are found through mechanisms that systematically elicit student preferences

(≿s)s∈S over course schedules. Evidence from business schools demonstrates that mechanisms

requiring strategic play on behalf of students can lead to large complications with e�ciency

(see Budish and Cantillon, 2012; Budish and Kessler, 2022; Sönmez and Ünver, 2010).

De�nition 4. A course allocation mechanism is strategy-proof if there is no student s,

who, by reporting manipulated preferences ≿′
s, receives an allocation she strictly prefers to

the course schedule she would get by reporting ≿s.

We are interested mainly in mechanisms that are strategy-proof in the large. To avoid un-

necessary heavy notation early in the paper, we introduce this concept formally in the proof

of Theorem 5. Here, we only provide its interpretation. A mechanism that is strategy-proof

in the large is strategy-proof in a limit market in which each student regards the �prices� in

pseudo-market mechanisms as exogenous to her report (see Azevedo and Budish, 2019; Bud-

ish, 2011).9 We also assume that strategic play is a concern only for the students, as course

priorities are typically set based on commonly observable factors such as student seniority

or department.

9See He, Miralles, Pycia, and Yan (2018) for asymptotic incentive compatibility in random assignment
matching models.

9



3 Pseudo-Market with Priorities

In this section, we present our novel mechanism, which allocates courses to students by

extending the concept of approximate competitive equilibrium from equal incomes of Budish

(2011) to settings with course priorities. For this purpose, we allocate to each student s ∈ S
a budget of fake money b∗s. To obtain good fairness properties, we assume that budgets are

almost the same, with 1 ≤ mins b
∗
s ≤ maxs b

∗
s < b ≡ 1 + β for some small β > 0. The

parameter β is interpreted as the maximum allowable budget inequality across students.

We also allow for slack in the market-clearing condition, which is bounded by α ≥ 0. In

addition, to respect the course priority structure, we require a special structure on priority-

speci�c prices, as de�ned below.

De�nition 5. An allocation x∗, prices p∗, and budgets b∗ constitute an (α, β)-Pseudo-Market

Equilibrium with Priorities if

1. x∗
s = max≿s

{
x′
s ⊆ C :

∑
c∈C p

∗
c,rs,cx

′
c ≤ b∗s

}
for each student s ∈ S.

2. For each c ∈ C, there is a cuto� priority level r∗c such that
∑

{s∈S:rs,c>r∗c}
x∗
s,c < qc and

p∗c,r ∈


{0} r > r∗c

[0, b) r = r∗c

[b,+∞) r < r∗c

. (1)

3. ||z∗||2 ≤ α, where z∗ = (z∗1 , ...., z
∗
M) and

(a) z∗c =
∑

s x
∗
s,c − qc if p

∗
c,1 > 0,

(b) z∗c = max(
∑

s x
∗
s,c − qc, 0) if p

∗
c,1 = 0.

4. 1 ≤ mins b
∗
s ≤ maxs b

∗
s < b ≡ 1 + β.

Unlike Budish (2011), the above de�nition of competitive market equilibrium allows for

course prices to depend on priority levels, so that the vector of prices is p∗ =
{
p∗c,r

}
c∈C,r∈R ∈

RMR. When R = 2, there are only two levels of priority: prioritized students and all others.

In undergraduate course allocation, department-speci�c priorities are an example of such a

priority structure. Condition (1) ensures that the equilibrium allocation satis�es the priority
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structure; that is, there exists a cuto� level of priority such that higher priority students

can obtain the course seats for free, students at the cuto� level of priority face non-negative

prices, and lower priority students cannot a�ord seats in the course. A similar condition on

prices appeared in He, Miralles, Pycia, and Yan (2018) in the context of random allocation

with priorities. Also, condition (1) ensures that the equilibrium allocation prevents justi�ed

course envy, that is there is no student allocated a seat in a course and another student who

is not allocated a seat in the course, has a higher priority for the course, and wants to add

the course to her schedule.

The market-clearing error for a course depends on its price for the lowest priority r = 1,

guaranteeing that under-demand is only counted as an error if the price for the lowest priority

group is positive. This requirement is a non-trivial extension of Budish (2011)'s de�nition

to settings with course priorities. Alternatively, if we try to de�ne the market-clearing error

per priority level, one could use the cuto� level to arti�cially lower the market-clearing error.

For example, consider a situation with the price of zero at and above the cuto� level of

priority and a price of b below the cuto� level. In this case, the market-clearing error is zero

according to the alternative de�nition. At the same time, the un�lled course seats should

be counted towards the market-clearing error, as they could be potentially eliminated if the

price below the cuto� level were decreased.

The condition
∑

{s∈S:rs,c>r∗c}
x∗
s,c < qc also did not appear in the previous literature. Note

that if we were to allow r∗c to satisfy
∑

{s∈S:rs,c>r∗c}
x∗
s,c = qc, a price p∗c,r∗c can be selected such

that no student at the cuto� level of priority is able to take a seat in course c. Then, raising

the cuto� level of priority to r∗c +1 does not lead any student to lose their seat in the course.

In turn, requiring that
∑

{s∈S:rs,c>r∗c}
x∗
s,c < qc guarantees the cuto� cannot be raised without

causing under-demand for the course.

3.1 Pseudo-Market with Priorities Mechanism

Budish (2011) establishes the existence of an approximate competitive equilibrium from

equal incomes under the upper bound on the market-clearing error. The upper bound on

the market-clearing error is proportional to the square root of the dimension of the price

space. In the presence of R course priorities for each of M courses, the dimension of a

price space is MR. This could potentially require a large market-clearing error for a Pseudo-

Market Equilibrium with Priorities to exist. The main idea of the proof of Theorem 1 is
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that we can reduce the e�ective dimension of the price space from MR to M , where we can

establish the existence of a Pseudo-Market Equilibrium with Priorities. In particular, we

consider the following parameterization. For each course c and priority r, we consider only

price vectors p ∈ RMR that satisfy

pc,r(t) = max(tc − (r − 1)b, 0),

for some t ∈ RM .10 We then establish the existence of an equilibrium in the smaller dimen-

sional space. It is clear that for equilibrium vector t∗ one could �nd cuto� levels such that

the corresponding price vector p∗ satis�es condition (1).

Theorem 1 (Existence). For any β > 0, there exists a (
√

kM/2, β)-Pseudo-Market Equi-

librium with Priorities.11

Theorem 1 establishes the existence of the Pseudo-Market Equilibrium with Priorities, which

is an extension of Theorem 1 in Budish (2011) to environments with course priorities. The

equilibrium has the same upper bound on the market-clearing error as an approximate

competitive equilibrium from equal incomes in the same environment without priorities.

Now, using the Pseudo-Market Equilibrium with Priorities, we introduce the Pseudo-

Market with Priorities (PMP) mechanism and investigate its properties in terms of stability,

e�ciency, fairness, and strategy-proofness.

De�nition 6. The Pseudo-Market with Priorities mechanism with market-clearing error α

and budget inequality β is de�ned through the following steps:

1. Each student s reports preferences ≿s over permissible course schedules.

2. Each student s is assigned a distinct budget b∗s in [1, 1 + β].

3. Compute an (α, β)-Pseudo-Market Equilibrium with Priorities (x∗, p∗, b∗). Allocate

courses to students according to x∗.

In general, the PMP mechanism depends on the level of allowable market-clearing error α

and the level of budget inequality β. For results that hold for all non-negative α ≥ 0 and

10We can think of this pricing scheme as if there is only one price per course, but each priority level r ∈ R
is entitled to a rebate of (r − 1)b. We thank Ran Shorrer for suggesting this intuitive interpretation.

11Budish (2011) shows the existence of an approximate market equilibrium from equal incomes with the
upper bound

√
min{2k,M}M/2. As we assume k ≤ M/2, the upper bound reduces to

√
kM/2.
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β ≥ 0, we avoid this dependence in our exposition. We will be speci�c when any restrictions

are necessary.

We �rst establish that the PMP mechanism results in an approximately stable course

allocation. The individual maximization condition in De�nition 6 ensures that the course

allocation is individually rational. Also, the condition on priority-speci�c prices prevents the

possibility of schedule blocking if courses are regarded as being at their full capacity.

Theorem 2 (Stability). The outcome of every Pseudo-Market with Priorities mechanism is

approximately stable.

Proof. Let (x∗, p∗, b∗) be an outcome of the Pseudo-Market with Priorities mechanism. The

individual maximization condition in De�nition 6 implies that x∗
s is individually rational for

each student s ∈ S. Consider now an environment with course capacities q′c =
∑

s∈S x
∗
s,c

for each c ∈ C. Hence, all courses are at their full capacities and x∗ is feasible in the new

environment. In addition, the only possibility for the existence of a block (s, C) is that

C = max⪰s{x′
s : x′

s ⊆ xs ∪ C}, C ̸= x∗
s, and for each c ∈ C with c /∈ x∗

s, there is a student

s′ ∈ S with c ∈ x∗
s′ and rs′,c < rs,c. The individual maximization in De�nition 6 implies

that there must exist at least one course c ∈ C with c /∈ x∗
s such that p∗c,rs,c > 0; otherwise

x∗
s should be replaced with C in the maximization problem of student s as we assume that

student preferences over course schedules are strict. Condition (1) on equilibrium prices then

implies that for any student s′ with a lower priority for course c�that is rs′,c < rs,c�we must

have p∗c,rs′,c ≥ b. Therefore, we obtain a contradiction: we must have c /∈ x∗
s′ , as an allocation

x∗ cannot possibly assign a student s′ a seat in course c. Hence, there are no blocks, and the

outcome of every Pseudo-Market with Priorities mechanism is approximately stable.

The main reason that the outcome of the PMP mechanism is approximately stable, but not

stable, is the possibility of undersubscribed and oversubscribed courses. In particular, there

may be students who want to take courses with un�lled seats and oversubscribed courses

may want to drop some students from their assignments. However, as Theorem 1 shows,

such instances are rare.

The presence of course priorities prevents the PMP mechanism from being Pareto e�-

cient. This is similar to how stable allocations in one-sided matching markets might not be

Pareto e�cient (see Roth and Sotomayor, 1990). We illustrate this in the following example.
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Example 1. Let us consider an economy with two students S = {1, 2} and two courses

C = {A,B}, each with a capacity of one. Student preferences are 1 : A ≻ B and 2 : B ≻ A.

Student budgets are b∗1 = 1 and b∗2 = 1 + β for some 0 < β < 1. We assume that course

priorities are the opposite of student preferences, with r1,B = r2,A = 2 and r1,A = r2,B = 1.

Both price vectors p∗A = p∗B = (2, 1) with priority cuto�s r∗A = r∗B = 2 and allocation

Student x∗
s,A x∗

s,B

1: 0 1

2: 1 0

constitute an exact market equilibrium with course priorities. However, the allocation is not

Pareto e�cient, as both students would be made better o� by exchanging their assigned seats.

The next result shows that the outcome of the PMP mechanism satis�es a form of constrained

Pareto e�ciency. The PMP mechanism's allocation cannot be Pareto dominated by another

allocation in which all courses have the same total number of seats assigned and priorities are

respected to at least the same degree; that is, for each course, the distribution of priorities

for the allocation cannot �rst-order stochastically dominate the distribution of priorities for

the PMP outcome (see De�nition 2).

Theorem 3 (E�ciency). The outcome of the Pseudo-Market with Priorities mechanism is

approximate priority-constrained e�cient.

The proof of the above result resembles the proof of Schlegel and Mamageishvili (2020) for

single-unit settings with random allocations and is postponed to Appendix A. Note that

we assume each agent has strict preferences over course schedules. Hence, for the above

result, we do not require the condition that a student choose the cheapest course schedule

when multiple course schedules are optimal as in Miralles and Pycia (2021) and Schlegel and

Mamageishvili (2020).

We also want to comment on the relationship between approximate priority-constrained

e�ciency and approximate stability. Though these concepts are related, they do not imply

each other. If we assume in Example 1 that both students have the same priority for both

courses, then there are two (approximately) stable allocations: x1 = {A}, x2 = {B} and

x1 = {B}, x2 = {A}. However, only the �rst allocation is approximately priority-constrained

e�cient. The concept of approximately priority-constrained e�ciency selects among approx-

imately stable allocations in the presence of weak priorities, favoring more Pareto optimal
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outcomes. In turn, consider an assignment of two courses to one student, in which the stu-

dent wants to take only one of the courses and drop the other course. The assignment is

approximately priority-constrained e�cient, but not approximately stable. Example S1 in

Supplementary Materials presents an approximately priority-constrained e�cient allocation

that is individually rational, but not approximately stable.12

The fairness of a course allocation should also account for the course priority structure.

Theorem 2 precludes the possibility that the PMP outcome has justi�ed course envy, guar-

anteeing that there is no student left wanting to get a course for which she has a higher

priority than some student who is assigned a seat in the course. However, the priorities

in undergraduate course allocation are weak, with hundreds of students enjoying the same

level of priority for many courses. The next result addresses the question of fairness among

students who could be weakly ordered in terms of their course priorities for all courses.

Theorem 4 (Fairness). If β ≤ 1
k−1

, the Pseudo-Market with Priorities mechanism results in

an allocation that has schedule envy bounded by a single course among students of the same

or lower levels of priority.

The result of Theorem 4 extends the one established in Budish (2011) for settings where all

students are on the same priority level. In the setting with priorities based on seniority and

student's department, the above result implies that the PMP mechanism with small budget

inequality produces an allocation in which any two students from the same department and

the same year of study have schedule envy bounded by a single course.

We also establish that students have almost no incentive to manipulate the PMP mech-

anism in large populations, which is the case for undergraduate course allocation, where

student bodies can consist of thousands of students.

Theorem 5 (Strategy-Proofness). The Pseudo-Market with Priorities mechanism is strategy-

proof in the large.

To alleviate the burden of extra notation, we de�ne the concept of a mechanism that is

strategy-proof in the large in the proof of Theorem 5 in Appendix A. To prove this result,

we show that the PMP mechanism is a semi-anonymous mechanism that is envy-free but

for tie-breaking (see Azevedo and Budish, 2019; Kalai, 2004). Intuitively, students can be

12To be precise, Example S1 in Supplementary Materials presents an allocation that is Pareto e�cient,
but not stable.
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partitioned into groups based on their course priorities, where students in the same group are

at the same level of priority in all courses. The PMP mechanism treats the group members

in the same way; that is, they face the same course prices and the same random lottery over

budgets. Hence, the PMP is a semi-anonymous mechanism. Moreover, the PMP mechanism

is envy-free but for tie-breaking, as a student with a larger budget cannot envy an allocation

of any other student within the same group with a lower budget. The statement the theorem

then follows from Appendix C of Azevedo and Budish (2019), which proves that any semi-

anonymous mechanism that is envy-free but for tie-breaking is strategy-proof in the large.13

Last, we relate the PMP mechanism to some mechanisms discussed in the literature.

In the case of no priorities, our properties reduce to those derived in Budish (2011). With

strict priorities, it is of interested to compare the PMP mechanism to the deferred acceptance

mechanism. If students have additive preferences, the student-proposing deferred acceptance

mechanism results in the student-optimal stable matching (see Roth, 1984), which can be

supported with a Pseudo-Market Equilibrium with Priorities where the market clears exactly,

the cuto� level of priority is at the lowest-priority student to receive a seat, and the price of

each course is zero at the cuto�. In fact, any stable allocation can be supported by a Pseudo-

Market Equilibrium with Priorities.14 This could be problematic, as one could inquire how

to select among several possible equilibria. In large markets, however, we expect the set of

stable matching to be small (see Kojima and Pathak, 2009) and, hence, the PMP mechanism

outcomes should not di�er much from each other.

When each student wants to enroll only in one course, our setting reduces to the unit-

demand variation of the problem, which is known in the literature as school choice. The

standard mechanisms in school choice are ordinal (Abdulkadiro§lu and Sönmez, 2003) or

elicit only restricted information about cardinal preferences from agents (Abdulkadiro§lu,

Che, and Yasuda, 2015). The set of ordinal mechanisms is restrictive, and one may be im-

plementing Pareto-dominated assignments using these mechanisms. He, Miralles, Pycia, and

Yan (2018) show how one can extend the pseudo-market approach, which elicits the cardinal

preferences of students, to school choice settings with random allocations. The PMP mech-

anism studied in this paper complements their results in school choice settings by analyzing

13Alternatively, one can consider a continuum replication of an economy with course priorities. By
leveraging on the price structure as in Theorem 1, the steps of Theorem 4 of Budish (2011) can be adapted
to obtain the result. The alternative proof is available upon request.

14See Miralles and Pycia (2021) for a related result showing that every e�cient assignment can be decen-
tralized through prices in random allocation settings.
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the pseudo-market mechanisms with deterministic allocations. While deterministic alloca-

tions are preferable from a practical market design point of view, they are also associated

with additional complications regarding the existence of an equilibrium. The existence of

equilibrium requires market clearing conditions to be satis�ed approximately, leading many

theoretical results to hold only in an approximate sense.

4 Simulations

In this section, we analyze the performance of the Pseudo-Market with Priorities (PMP)

mechanism using simulations based on course allocation data from a private institution in the

mid-Atlantic region. For this purpose, we compare the PMP mechanism with the Deferred

Acceptance with single and multiple tie-breakings and the Random Serial Dictatorship with

set-asides. The two variants of the Deferred Acceptance mechanism were previously used

in the allocation of students to public schools and doctors to hospitals, while variants of

the Random Serial Dictatorship are used in undergraduate course allocation in many U.S.

universities. We begin with the description of the course allocation data that we use for our

simulations.

4.1 Course and Student Data

Our simulations utilize undergraduate course allocation data for one semester (Spring 2018).

The undergraduate population consists of 6023 students from 7 colleges, 41 departments,

and 5 classes of students based on year of study.15 We merge the data for the fourth

and �fth-year students into one year of study, as some colleges have only a few �fth-year

College A B C D E F G

# of students 853 1642 259 1274 745 741 509

# of courses 180 84 12 269 88 84 39

Table 1: The number of students and courses in various colleges.

15We consider only undergraduate students who were enrolled full-time. There are also some graduate
students and exchange students who take undergraduate courses. We exclude these students from the data.
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students. The data also contains information about 756 courses across 42 departments.16

Table 1 presents information on the number of students and courses o�ered by di�erent

colleges. We use capital letters to denote colleges. Colleges di�er in the size of their student

population and the number and type of courses they o�er. For example, some colleges serve

the whole university, o�ering many general education courses in topics such as math and

science, whereas some colleges o�er courses mainly for their students.

In our simulations, we use the data on maximum enrollment, actual enrollment, and the

number of course seat reservations. Table 2 presents several quantiles of the distribution of

these characteristics. The table shows that a typical median quantile course has a capacity

for 25 students, the median actual enrollment is 15, and the median number of reserved seats

is 3. Overall, 33 455 course seats were available in all courses during the considered term.

Among them, 23 369 seats got occupied by students in the actual enrollment. 13 922 total

seats were reserved as set-asides at the start of the course enrollment process.

Course reservation (or set-asides). Course seat reservations can be done at college,

department, major, or year of study levels. There are no major-level course reservations

in the data. We also convert the college-level reservations to department-level reservations;

instead of a college, we list all college departments for a course reservation. Then, we unite all

department reservations corresponding to the same year of study into one reservation. This

signi�cantly simpli�es the course reservation data.17 For each year of study, we have almost

a binary reservation structure: a set of departments and several course seat reservations.

Quantile 10% 25% 50% 75% 90%

Max Enrollment 8 15 25 50 98

Act Enrollment 3 7 15 35 72

# of Course Reserves 0 0 3 20 53

Table 2: Quantiles of maximum enrollment, actual enrollment, and number of reserved seats.

16There are di�erent numbers of departments for courses and students. Some departments are used only
for course classi�cation (i.e., no students are assigned to these departments) and some departments are used
only for student classi�cation (i.e., no courses are assigned to these departments). We also restrict our sample
to semester-long courses.

17This simpli�cation ignores some redistribution concerns of course reservations. Several department-level
reservations could aim to obtain a balanced class enrollment. Our simulations do not account for this aspect
of the actual course allocation process.
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Course Departments Year of Study #Reserved Seats

Economics Dept 1, Dept 2 Year 1 25

Economics All Year 4 2

Economics Dept 2, Dept 3 All 30

Table 3: Some examples of course reservations.

The only exception is reservations done for all years of study. Table 3 presents examples of

course reservation types observed in the data. The criteria for course reservations are not

mutually exclusive and could potentially intersect. If there is a student who is eligible for

both a year-speci�c reservation and a reservation for all years of study (labeled �All� in Table

3), the student is assigned to the year-speci�c reservation without deducting the number of

reserved seats for the reservation for all years of study. If no reserved seats are left in the

year-speci�c reservation, the student is assigned a seat in the reservation for all years of

study.

Binding maximum enrollment capacity. The percentage of courses that are at or above

the maximum enrollment capacity is an important indicator of how much student interests

overlap and the need for a design of the course allocation system. Table 4 shows that 11.2% of

all courses are at the maximum enrollment capacity. This number does not re�ect, however,

a large heterogeneity across the colleges. The percentage of courses that are at or above the

binding capacity within each college ranges between 5.6% and 33%.

Table 4 also shows that the enrollment capacity is not a strictly binding constraint for

more than 7% of the courses. The enrollment capacity in such courses is intended to ensure

proper class dynamics and balanced course sections. For example, it is di�cult to teach

business communication or drama classes of a large size. Also, it might be di�cult for one

instructor to teach one section with more than sixty students and another with fewer than

# seats above max capacity ≥ 0 ≥ 1 ≥ 2 ≥ 3 ≥ 4 ≥ 5

% of courses 11.2% 7.3% 4.1% 3.3% 2.5% 1.9%

Table 4: The percentage of courses at or above the maximum enrollment capacity.
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twenty students of the same course in the same semester. In these situations, the maximum

enrollment constraint is �exible and such classes could accommodate students above their

capacity. This �ts our treatment of the enrollment constraints in the PMP mechanism,

which allows some enrollment above course capacity. In some courses, though, the maximum

enrollment capacity is strictly binding. These situations are typically associated with the

physical limitations of a classroom assigned to the course. In our simulations, we set each

course capacity equal to the maximum enrollment capacity observed in the data and the

number of actually assigned students.

Student utility. The course allocation process that is currently used by the university

closely follows the Random Serial Dictatorship with set-asides. However, the data does

not contain information on students' utilities over courses. Hence, we need to recover this

information. We accomplish this by exploiting the information on actual student-course

enrollment, the order in which students register for courses, and the information on course

reservations.18

One major obstacle in recovering student utilities is that course reservations do not remain

constant during the course allocation process. After the �rst week of course registration,

the demand for courses from students becomes more or less clear. To ensure full course

enrollment, departments responsible for course allocation start relaxing course reservations

by admitting students from waiting lists. While there are best practices for handling waiting

lists, the actual enrollment is done solely at each department's discretion.19 As a result, the

�nal enrollment could violate individual course reserves set at the beginning of the process.

To avoid this problem, we adjust the actual course reserves to ensure that the course reserves

are consistent with the student-course allocation observed in the data. We use the celebrated

Hall's Marriage Theorem to identify course reserve violations. We explain how we apply the

theorem and minimally adjust course violations in Appendix C. Using the adjusted course

reserves and the �nal student-course allocation, we calibrate a simple student utility model.

Our student utility model assumes that a student's utility from taking a course depends

18The order we observe re�ects the earliest time for a student to register for a course. This time does
not always coincide with the earliest time each student could have registered for the course (the true lottery
number in the random serial dictatorship). For example, it is possible that the course registration window
for a student opened earlier in the morning, but the student decided to register only in the evening. Some
students may have their registration windows delayed if they have outstanding �nancial obligations in front
of the university.

19The best practices include prioritizing senior students and students who have majors or minors in that
department.
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only on her college, her year of study, and the course's college plus student- and course-

speci�c idiosyncratic component; that is, for a student from college a and year y and course

c from college a′,

usc = θaya′ + εsc, (2)

where θaya′ is a �xed utility component and εsc is a random utility component. We assume

that εsc ∼ N(0, σ) are independently and normally distributed random variables with zero

mean and variance σ. Student utilities are additive across courses. As a normalization, we

consider the value of the outside option from not taking a course to be zero and the standard

deviation of the noise parameter to be σ = 1.20

In addition, we assume that each student's choice set is limited to 80 courses. This is

done for computational purposes and is further motivated by the practical observation that

any given student typically only considers taking a subset of all o�ered courses during the

semester (see also Budish and Cantillon, 2012; Diebold and Bichler, 2017). We draw these

80 courses randomly among those taken by at least one student from the same college and

year. Moreover, the probability that a course from college a′ is drawn equals the share of

students from the same college-year pair enrolled in courses in college a′ in the actual data.21

We emphasize that students might not have all 80 utility entries positive. Instead, some

utility draws may be below the value of the outside option.

The actual course allocation process (that resembles Random Serial Dictatorship with

set-asides) does not necessarily result in a stable allocation. This creates a substantial

complication, as most of the empirical matching literature relies on stability to identify the

preferences of agents (see, e.g., Agarwal and Budish, 2021; Fack, Grenet, and He, 2019).

To overcome this complication, we use a simulated method of moments. Using the order

in which students choose courses, adjusted course reserves, and the �nal course allocation

in the university data, we calibrate θ to match the number of courses in each college taken

by students from each college-year pair (7 × 4 × 7 moments in total; the same number as

the number of calibrated parameters). Appendix C describes the calibration procedure in

detail. In the appendix, we also discuss some interesting patterns of the calibrated values of

20In Appendix C, we also analyze an alternative normalization with a variable outside option that can
depend on the student's college and the year of study. We also present the welfare comparison of the four
mechanisms using this normalization in Appendix D.1.

21If students from a given college-year pair took fewer than ten courses in a college, the student choice
sets are enlarged to include courses of the same or next level in the same department.
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θ presented in Table C2.

We want to acknowledge some limitations of our student utility model. The model

does not allow systematic di�erences in popularity across courses within a college. We also

do not account for scheduling or other constraints that are present parallel to a student's

willingness to take a course. The additive model speci�cation could also be restrictive.

Hence, one should be careful in interpreting the calibrated parameter values. Though we

believe a more detailed student preference calibration might be possible, this is not the main

focus of our paper. Rather, we want to obtain a sensible student utility model to evaluate

the performance of the four course allocation mechanisms described in Section 4.2.

4.2 Course Allocation Mechanisms

Using the simple student utility model described above, we calculate the outcomes of four

course allocation mechanisms across 100 runs. Within each run, we consider a �xed draw of

students' utilities. We assume that students report their utilities truthfully, as all considered

mechanisms are either strategy-proof or strategy-proof in the large (see Theorem 5).

The Pseudo-Market with Priorities (PMP) mechanism. To �nd the outcome of

the PMP mechanism, we assign budgets evenly spaced between 1 and 1 + β with β =

1/(k − 1) = 0.25. The theoretical market-clearing error bound equals α =
√
kM/2 ≈ 43.5.

We also assign students to R = 8 priority groups for each course. Priority is on four years of

study and whether a student is within a department with course reserves. We consider two

cases: one is with year-speci�c priority taking precedence over department-speci�c priority

and the other one is with precedence being reversed.

The algorithm that searches for a Pseudo-Market Equilibrium with priorities departs

from the one used in Budish (2011) to accommodate the presence of priority-speci�c prices

and to obtain a tighter bound on the number of oversubscribed courses. The algorithm

has two phases. Phase I searches for priority-speci�c prices that ensures the market-clearing

error is below theoretical bound α. Using the idea of the proof of Theorem 1, we conveniently

parameterize prices with t ∈ [0, Rb]M , where b = 1.251. For each t ∈ [0, Rb]M , course c ∈ C,
and priority r ∈ R, we de�ne priority-speci�c prices as pc,r(t) = max(tc − (r− 1)b, 0). Then,

we look for a pseudo-market market equilibrium in this lower-dimensional space. This idea

signi�cantly speeds up the search for a Pseudo-Market Equilibrium.
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The search in Phase I starts with an educated guess for equilibrium prices based on the

student demand at zero prices.22 Then, the algorithm �nds each student's utility-maximizing

schedule and adjusts prices proportional to the number of over and undersubscribed seats.

The algorithm searches in the lower dimensional space of t-parameters for student demand

with the market-clearing error smaller than α. If the algorithm fails to improve the error in

a given iteration, the current price vector is retained and the size of the price adjustment is

reduced in the next iteration. The prices and the allocation of the smallest market clearing

error are also retained. Once theoretical bound α is reached, the algorithm continues to

improve course allocation until the market-clearing error fails to improve by more than 1%

within six consecutive iterations.23

Phase II takes the allocation obtained in Phase I and gradually increases the prices only

for oversubscribed courses to ensure that no courses are oversubscribed by more than k−1 = 4

seats and the percentage of oversubscribed courses is smaller than the one observed in the

data (see Table 4). As a result of Phase II, an allocation with a market-clearing error greater

than the theoretical bound α might be obtained. In this case, the algorithm returns to Phase

I. Simulations show that there are typically no more than 1-3 iterations between Phases I and

II. However, if there are more than 6 iterations between the phases, the algorithm restarts

with a new set of initial prices.

Deferred Acceptance mechanism with single and multiple tie-breakings. Both of

these mechanisms use the same priority groups as the PMP mechanism. The main di�erence

between the two variants is how they break ties among students with the same priority.

The �rst variant uses a single tie-breaking lottery across all courses, which determines the

strict priority order for each course, then executes the student-optimal deferred acceptance

algorithm. We refer to this version of the mechanism as DA. The second variant uses

multiple course-speci�c tie-breakings. We refer to this version of the mechanism as DA(m).

Both versions have received a thorough analysis in the many-to-one matching literature (see,

e.g., Erdil and Ergin, 2008, 2017).

22We found that starting with an educated guess improves the speed of convergence over starting with
random prices as in Budish (2011).

23The allocation search process is adjustable. The current settings balance the trade-o� between a small
market clearing error and the algorithm's run time. We use the Walras Tâtonnement procedure to �nd an
approximate equilibrium, a simpler algorithm than the one used in Budish (2011). At the same time, we do
not consider course complementarities, which are a part of Budish's paper.
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The Random Serial Dictatorship (RSD) with set-asides. We �nally describe how

we determine the outcome of the RSD mechanism with set-asides. We consider the strict

priority order of students as in the DA mechanism with the single tie-breaking lottery. Using

this order, the program assigns available course seats according to student utility. The course

reservations are treated as described in Section 4.1: for each year of study (including the

�All� option), there is a set of departments and amount of course reserved seats for each

course (which could be zero). If a student satis�es one of the course reservation criteria, the

student can be enrolled in one of the reserved or regular seats; otherwise, the student can be

enrolled only in a regular seat. If a student is eligible for two course reservation criteria, the

set-asides with year-speci�c reservations are assigned �rst and the set-asides with all years

of study reservations are assigned last.

During numerous rounds of simulations, we encountered the question of how to pick the

number of reserved seats. We �rst set the number of reserved seats equal to the number of ad-

justed course reserves as described in Section 4.1. This led to signi�cant under-performance

of RSD with set-asides.24 The mechanism treated the number of reserved seats as �xed,

which resulted in numerous ine�ciencies, especially when too many seats were reserved.

As described in Section 4.1, the course enrollment process in practice is more �exible: the

university departments relax course reservation constraints during the course allocation pro-

cess. Doing so releases pressure on the department heads to set course reservations precisely

at the beginning of the process. The PMP, DA, and DA(m) compute �e�ective set-asides�

during the course allocation process. Hence, comparing the performance of the other three

mechanisms to the performance of RSD with a �xed number of set-asides would not be a

fair exercise.

Instead, we decided to take a di�erent route and estimate the optimal set-asides in the

RSD mechanism. For this purpose, we utilize the DA mechanism. We generate 100 environ-

ments with random student utilities according to the student utility model and a random

tie-breaking and run the DA mechanism. To determine the optimal set-asides for a given set

of departments, we take the average across all environments (rounded to the nearest integer).

In addition to the ine�ciencies associated with accurately determining set-asides, the

RSD with set-asides mixes two priority structures: year-speci�c priority and department-

24The RSD with set-asides from the actual data leads to even worse performance.
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speci�c priority. Hence, the RSD mechanism does not respect any priority structure.25 This

leads to the question of what priority structure we should choose when running the PMP, DA,

and DA(m) mechanisms and whether we should prioritize the year- or department-speci�c

priority. Our main simulations compare the performance of the four mechanisms with a

course priority structure in which year-speci�c priority takes precedence over department-

speci�c priority. Appendix D contains simulations in which department-speci�c priorities

take precedence over year-speci�c priority.

4.3 Simulation results

We consider the Random Serial Dictatorship (RSD) mechanism with the optimal set-asides

as our benchmark. We then evaluate the performance of the Pseudo-Market with Priorities

(PMP) and Deferred Acceptance algorithm with single and multiple tie-breakings (DA and

DA(m), respectively) relative to this benchmark using student utilities, the standard deviation

of student utilities across students, and the number of students who experience schedule envy.

The �rst metric measures students' satisfaction in their respective schedules. The two other

metrics measure the fairness of course allocation among students. We conduct 100 simulation

runs, where each run corresponds to a random utility draw and a random tie-breaking,

which we keep the same across RSD, PMP, and DA.26 DA(m) has multiple course-speci�c

tie-breakings. We highlight that the standard deviation of student utilities measures how

much student utilities are dispersed within each run of the simulation, not across the runs.

Table 5 presents the results of our simulations averaged across all runs. We observe that

the PMP mechanism delivers the highest mean student utility for all years of study among all

four mechanisms. The improvements compared to the benchmark for �rst and second-year

students are 6.92% and 3.23%, respectively. The percentage numbers correspond to 1223 out

of 1565 frosh and 734 out of 1611 sophomores to receive a schedule in the PMP mechanism

that di�ers from the RSD outcome with the average improvements in utility of 9% and 7%,

25If we assume one takes precedence over the other, it is always possible to come up with a counter-example
leading to a priority violation for the �nal RSD outcome (a stability violation). For instance, assume that
year-speci�c priority takes precedence over department-speci�c priority. Then, some senior students may
remain unassigned even though set-aside seats remain un�lled.

26The program code using Mathematica is available. The majority of the simulations were run on a server
with 12 Cores of CPU (2.6 GHz of an Intel Xeon Gold 6126 CPU), 64 GBs of RAM, 70 GBs of SSD hard
drive space, and Windows Server 2019 Standard operating system. On average, it takes about one hour to
calculate the allocation outcomes of all four mechanisms at one core.
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Mean Utility Year 1 Year 2 Year 3 Years 4

Pseudo-Market with Priorities 6.92% 3.23% 1.43% 0.43%

Deferred Acceptance
with single tie-breaking

-0.34% 0.67% 0.68% 0.39%

Deferred Acceptance
with multiple tie-breakings

-3.29% 0.11% 0.62% 0.41%

St. Dev. of Utility Year 1 Year 2 Year 3 Years 4

Pseudo-Market with Priorities -11.16% -2.92% -0.64% 0.05%

Deferred Acceptance
with single tie-breaking

-1.36% -0.40% -0.02% 0.09%

Deferred Acceptance
with multiple tie-breakings

-9.79% -2.84% -0.38% 0.07%

Table 5: The performance of the Pseudo-Market with Priorities, Deferred Acceptance with single tie-

breaking, and Deferred Acceptance with multiple tie-breakings mechanisms compared to the benchmark

of Random Serial Dictatorship with optimal set-asides, with year-speci�c priorities taking precedence over

department-speci�c priorities. The results are based on 100 runs with di�erent random utility draws.

respectively. The improvements for third and fourth-year students, where the allocation of

course seats is barely constrained, are 1.43% and 0.43%, respectively. These small relative

improvements are actually signi�cant for many students: 307 out of 1422 juniors and 62

out of 1425 seniors receive a di�erent schedule in the PMP mechanism with the average

improvement in utility of 7% and 10%, respectively. The improvements in student mean

utilities compared to the RSD benchmark are statistically signi�cant for all years of study

(see Appendix D.1 for details). Both the DA and DA(m) mechanisms deliver only a small

improvement (less than 1%) relative to the benchmark for years 2-4. For �rst-years, both

the DA and DA(m) underperform relative to the benchmark. This occurs because the RSD

mechanism reserves some course seats to Year 1 students leading to better outcomes for

them. The performance of the DA(m) mechanism is slightly inferior to that of DA for

years 1-3, which is in line with the comparison of the DA and DA(m) mechanisms in the

previous literature (e.g., Abdulkadiro§lu, Pathak, and Roth, 2009; Abdulkadiro§lu, Che, and

Yasuda, 2015). However, this di�erence is not statistically signi�cant for most years of study.

Overall, the result that the PMP delivers the highest student utility arises because the PMP

mechanism is a cardinal mechanism, accounting for the cardinal utilities of students. In

contrast, the other three are all ordinal mechanisms, based only on the ordinal preferences
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# seats above max capacity ≥ 1 ≥ 2 ≥ 3 ≥ 4 ≥ 5

% of courses 4.23% 0.86% 0.24% 0.16% 0%

Table 6: The percentage of oversubscribed courses in the PMP mechanism.

of students.

In principle, the higher mean utility in the outcomes of the PMP mechanism might be

due to the presence of the market-clearing error, which allows some courses to be oversub-

scribed.27 On average, the market-clearing error of the PMP outcomes is about 14 seats,

which is much smaller than theoretical error α ≈ 43.5. Table 6 also reports the distribu-

tion of the number of oversubscribed courses. No courses are oversubscribed by more than

k − 1 = 4 seats, in line with Lin, Nguyen, Nguyen, and Altinkemer (2022), which provides

a theoretical justi�cation for the existence of an equilibrium with a good-by-good clearing

bound equal to k − 1. The number of oversubscribed courses is also smaller than the ones

observed in the data presented in Table 4.

In addition, Table 5 presents evidence that the PMP mechanism delivers a reduced stan-

dard deviation in student utilities for years 1-3 compared to the three other mechanisms.

The standard deviation for year 4 is slightly higher than the RSD benchmark (0.05%). This

increase is primarily associated with an increase in the utilities of seniors compared to the

RSD benchmark. The change is also small for second and third-year students, where the im-

pact of a good allocation mechanism is limited (2.92% and 0.64%, respectively). The largest

reduction occurs for �rst-year students (11.16%). The drop in standard deviation for the DA

mechanism is less than 1.5% for all years of study. However, we observe a more pronounced

decrease in the standard deviation for years 1-3 for the DA(m) mechanism (between 0.38%

and 9.79%). F-tests for the PMP and DA(m) mechanisms in each simulation run reject the

null hypothesis that the standard deviation of �rst-year student utilities is larger than that

of the RSD mechanism on a 5% signi�cance level (see Appendix D.1 for details)

To provide additional information on allocation fairness, we also report in Table 7 data

on students who experience envy towards students of the same or lower priority level. The

�rst column shows the percentage of students who experience no such envy. To obtain the

27Alternatively, we could have compared the performance of the four mechanisms with quotas equal to the
number of seats assigned in the PMP mechanism for each run. We thank Olivier Tercieux for this suggestion.
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0 courses 1 course 2 courses 3 courses 4 courses 5 courses

Pseudo-Market with Priorities 98.74% 1.26% 0% 0% 0% 0%

Random Serial Dictatorship
with optimal set-asides

92.63% 6.30% 0.91% 0.14% 0.02% 0.001%

Deferred Acceptance
with single tie-breaking

93.38% 5.68% 0.82% 0.11% 0.01% 0.0005%

Deferred Acceptance
with multiple tie-breakings

93.96% 5.74% 0.29% 0.01% 0.0003% 0%

Table 7: The percentage of students who experience envy towards students of the same or lower priority

for the four mechanisms. The �rst column provides information about students who experience no envy.

The other columns show the percentage of students who experience envy bounded by 1, ..., 5 courses.

numbers in the other columns, we remove courses one by one from envied schedules and

check whether envy vanishes. Our simulations support Theorem 4 that shows that the PMP

mechanism satis�es schedule envy bounded by a single course among students of the same

or lower levels of priority. None of the other three mechanisms satisfy this property. Still,

our results show that envy is generally by no more than by a single course in the RSD, DA,

and DA(m) mechanisms. However, the percentages of students who experience any envy are

relatively large (7.37%, 6.62%, and 6.04%, respectively). In contrast, just 1.26% of students

in the PMP mechanism prefer the course schedule assigned to another student of the same

or lower levels of priority in each course. Overall, our simulations support that the PMP

mechanism limits envy and provides a fairer course allocation among students.

Last, we discuss the course prices in the equilibria of the PMP mechanism. Table 8

presents information about price cuto� levels and the percentages of students allocated

di�erent numbers of courses with positive prices (when student budgets are between 1 and

1.25). The table shows that 62.8% of courses have the lowest possible price cuto�, re�ecting

the non-binding capacity of most courses in the data. The average prices are more or less

stable at most cuto�s except the lowest one.28 The overwhelming majority of senior students

obtain all their courses for zero price, with only around 12% paying a positive price for at

least one course. A similar picture is observed for second and third-year students, with

many also obtaining all their seats for free. The picture is completely di�erent for �rst-year

28A positive price at a cuto� level means that only students of the same or higher priority can obtain a
seat in this course in the equilibrium.
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Cuto� level of priority and their average prices

Cuto� level of priority 1 2 3 4 5 6 7 8

% of courses 62.8% 4.8% 13.8% 3.2% 10.7% 1.7% 2.9% 0.1%

average cuto� price 0.18 0.62 0.81 0.85 0.83 0.84 0.77 0.86

Courses with positive prices (% is the percentage of students)

# courses with positive prices Year 1 Year 2 Year 3 Years 4

0 courses 2.4% 37.3% 62.6% 88.0 %

1 course 33.3% 49.4% 34.3% 11.6%

2 courses 41.1% 12.2% 2.9% 0.4%

3 courses 18.8 % 1.1% 0.2% 0.01%

4 courses 4.1% 0.04% 0.01% 0%

5 courses 0.3% 0.01% 0% 0%

Table 8: The prices and course allocation in the PMP mechanism with students budget in [1, 1 + β] =

[1, 1.25]. The top section presents the information about cuto� levels and their average prices. The bottom

section shows the percentage of students allocated di�erent numbers of courses with positive prices by year

of study.

students. Only 2.4% of �rst-year students consume all courses for free. A typical �rst-year

student pays a positive price for 1-3 courses. To a�ord this, course prices at the lowest cuto�

level should be low, with an average price of 0.18 at the lowest cuto� level.

Overall, the Pseudo-Market with Priorities mechanism delivers a higher mean student

utility, a lower standard deviation of student utilities, and a smaller number of students

who experience envy compared to the Random Serial Dictatorship with set-asides and the

Deferred Acceptance algorithms with single and multiple tie-breakings. Hence, the Pseudo-

Market with Priorities mechanism leads to higher average satisfaction among students and

produces fairer outcomes than the mechanisms commonly used in practice.

5 Conclusion

In this paper, we explore a many-to-many matching problem that arises in undergraduate

course allocation. We allow courses to prioritize students based on factors such as their

year of study and department and design a deterministic allocation mechanism, the Pseudo-

Market with Priorities (PMP) mechanism, that respects this priority structure. The PMP
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mechanism is an extension of the approximate competitive equilibrium from equal incomes

mechanism (Budish, 2011) to settings with course priorities. This mechanism maintains

a small market-clearing error and has desirable properties in terms of stability, e�ciency,

fairness, and strategy-proofness.

To employ the PMPmechanism, university registrars need to adopt a preference reporting

language that allows students to express how they compare di�erent course schedules and

account for substitutabilities and complementarities that may exist among courses. Software

developed by Budish, Cachon, Kessler, and Othman (2017) to implement the approximate

competitive equilibrium from equal incomes at Wharton Business School and Columbia

Business School exhibits this in a manner that is easily accessible to students (see also

Bichler and Merting, 2021). Moreover, Soumalias, Zamanlooy, Weissteiner, and Seuken

(2023) recently developed powerful machine learning-based techniques to help with student

preference elicitation.29

Finding a market equilibrium with a small market-clearing error allowing for general

student preferences could be also a di�cult computational problem (see Othman, Papadim-

itriou, and Rubinstein, 2016; Vazirani and Yannakakis, 2021). However, when complemen-

tarities in preferences are limited, heuristic algorithms �nd a market equilibrium with much

tighter approximations than theoretical bound (see Budish, Cachon, Kessler, and Othman,

2017; Othman, Sandholm, and Budish, 2010). In this paper, we also show that when prefer-

ences are additive an algorithm based onWalrasian tâtonnement locates a market equilibrium

fast and leads to tight approximation bounds. Hence, for practical applications, it is impor-

tant to understand what is the best input language of preferences that is expressive enough

and also guarantees the calculation of a market equilibrium with a market-clearing error

below theoretical bounds for almost every instance (see Boutilier and Hoos, 2001; Sandholm

and Boutilier, 2006).

In closing, we highlight the ways in which university registrars can improve undergraduate

course allocation by adopting the PMP mechanism. In comparison to the RSD mechanism,

PMP has several noteworthy advantages. A �rst advantage is that the PMP mechanism

endogenously computes course set-asides. The PMP mechanism prevents students of lower

priority from taking course seats that higher priority students could bene�t from, thereby

29See also Brero, Lubin, and Seuken (2018) for the use of these techniques for the preference elicitation
in combinatorial clock auctions.
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relieving university registrars of attempting to correctly estimate the number of set-asides.

Thus, the mechanism ensures that all the students who require a course in their department

are assigned these courses and limits the number of remaining places that must be assigned

manually. The second advantage of the PMP mechanism over the RSD mechanism (as well

as the DA and DA(m) mechanisms) is that it uses student cardinal preferences to allocate

course seats. Hence, it is more �exible than the other three mechanisms, given its potential to

accommodate preference complementarities and deliver higher utility to students. The third

advantage of the PMP mechanism is that it allocates courses more fairly among students�

an outcome that none of the other three mechanisms can deliver. Our simulations based on

actual university data support these advantages of the PMP mechanism.

Finally, adopting the Pseudo-Market with Priorities mechanism would provide valuable

data to university registrars on student demand. As students have almost no incentive to

misrepresent their preferences, the market-clearing prices of these mechanisms can serve as

indicators of student demand and help universities distinguish popular courses from unpop-

ular ones. With this information, universities can adjust class sizes, timing, and sections to

further increase student satisfaction.
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A Appendix: Proofs

Proof of Theorem 1. Consider an economy (S, C, Q,V ,R) and a budget vector b =

(b1, ..., bM) that satis�es 1 ≤ mins(bs) ≤ maxs(bs) < b ≡ 1 + β for some β > 0.

We consider the M -dimensional set T = [0, Rb]M , which allows us to conveniently pa-

rameterize priority-speci�c prices and look for a competitive market equilibrium in a lower

dimensional space. In particular, for each t ∈ T , course c ∈ C, and the level of priority

r ∈ R, we de�ne priority-speci�c prices as

pc,r(t) = max(tc − (r − 1)b, 0). (A.1)

For each t ∈ T and each c ∈ C there is a unique cuto� level of priority r∗c (t) ∈ R such that

for any r ∈ {1, ..., R}, pc,r(t) satis�es

pc,r(t) ∈


{0} r > r∗c (t)

[0, b) r = r∗c (t)

[b,+∞) r < r∗c (t)

. (A.2)

We will also consider an auxiliary enlargement of this set, T̃ = [−1, Rb+ 1]M , and similarly

de�ne pc,r(t̃) for t̃ ∈ T̃ . We de�ne demand function ds : T̃ → 2C as

ds(t̃) = max
≿s

{
x′
s ⊆ C :

∑
c∈C

x′
s,c max(t̃c − (rs,c − 1)b, 0) ≤ bs + τs,x′

s

}
,

where the τs,xs are student- and schedule-speci�c taxes chosen to ensure that the demand is

single-valued (similarly to Budish, 2011). For each course c ∈ C, excess demand zc : T̃ → Z

is de�ned by

zc(t̃) =
∑
s∈S

x∗
s,c − qc,

where x∗
s = ds(t

∗) for all s ∈ S. The excess demand is bounded because −S ≤ zc ≤ S − 1

for all c ∈ C. We also de�ne a budget surface for each student s ∈ S and schedule xs ⊆ C as

H(s, xs) =

{
t̃ ∈ T̃ :

∑
c∈C

xs,cmax(t̃c − (rs,c − 1)b, 0) = bs + τs,xs

}
.
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Note that the budget surface H(s, xs) may not be a hyperplane as in the case without

priorities (see Budish, 2011). Lemma B1 in Appendix B shows that it is still possible to

choose bs and τs,xs such that at most M budget constraints intersect for any t̃ ∈ T̃ .
Next, we de�ne a truncation function trunc: T̃ → T , where for each c ∈ C

(trunc(t̃))c = min{Rb,max{0, t̃c}}.

Also, we introduce a tâttonnement price adjustment function f : T̃ → T̃ by

f(t̃) = trunc(t̃) + γz(trunc(t̃)),

where γ ∈ (0, 1/S). Suppose that f has a �xed point t̃∗ = f(t̃∗), and denote its truncation by

t∗ = trunc(t̃∗). We show that prices {pc,r(t∗)}c∈C,r∈R de�ned by equation (A.1), allocation

x∗
s = ds(t

∗), and budgets b∗s = bs + τs,x∗
s
for all s ∈ S constitute an exact competitive

equilibrium (or (0, β)-Pseudo-Market Equilibrium with Priorities as in De�nition 5). We

might only need to slightly adjust t∗ to �nd another �xed point that satis�es condition∑
{s∈S:rs,c>r∗c (t

∗)} x
∗
s,c < qc.

� Prices {pc,r(t∗)}c∈C,r∈R and cuto�s de�ned by (A.1) and (A.2) ensure that condition

(1) is satis�ed.

� The de�nition of demand function implies that any course schedule that student s

prefers to x∗
s = ds(t

∗) must cost strictly more than b∗s = bs + τs,x∗
s
.

� pc,1(t
∗) > 0 implies zc(t

∗) = 0. To see this, note that equation (A.1) implies t̃∗c > 0.

In addition, we must have t̃∗c < Rb; otherwise (trunc(t̃∗))c = Rb and zc(t̃
∗) < 0, which

contradicts the �xed point equation. Hence, t̃∗c ∈ (0, Rb) and the �xed point equation

ensures zc(t∗) = 0.

� pc,1(t
∗) = 0 implies zc(t

∗) ≤ 0. To see this, consider two cases. If t̃∗c ∈ (0, Rb), the

�xed point equation implies zc(t
∗) = 0. If t̃∗c ∈ [−1, 0], we have t∗c ≡ trunc(t̃∗c) = 0,

pc,1(t
∗) = 0, and the �xed point ensures zc(t∗) ≤ 0.

� To make sure condition
∑

{s∈S:rs,c>r∗c (t
∗)} x

∗
s,c < qc is satis�ed (see condition (1)), assume

from the contrary that the demand for a course c across priority levels lower than

r∗c (t
∗) is greater than its number of seats; that is,

∑
{s∈S:rs,c>r∗c (t

∗)} x
∗
s,c ≥ qc. The
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previous two bullet points establish that zc(t
∗) ≤ 0. Hence, our assumption implies∑

{s∈S:rs,c>r∗c (t
∗)} x

∗
s,c − qc =

∑
s∈S x

∗
s,c − qc = 0. In other words, there is no demand for

course c from students at level of priority r∗c (t
∗). So, we can consider t̂∗c = t∗c+b−pc,r∗c (t∗),

where the cuto� priority group faces price b and the prices of lower priority levels do not

change. With t̂∗ = (t̂∗c , t
∗
−c), we obtain that pc,r∗c (t̂∗) = 0, pc,r∗c (t̂∗) = b, and the adjustment

does not change the demand and excess demand for course c for all students, but it

increases the cuto� level r∗c (t̂
∗) = r∗c (t

∗)+1. If we still have
∑

{s∈S:rs,c>r∗c (t̂
∗)} x

∗
s,c ≥ qc, we

repeat the price adjustment until the condition is satis�ed. Finally, zc(t̂∗) = zc(t
∗) = 0

implies t̂∗c < Rb and t̂∗c > t∗c ≥ 0. Therefore, t̂∗c = trunc(t̂∗c) + zc(t̂
∗), and, hence, vector

t̂∗ satis�es the �xed point equation and is such that
∑

{s∈S:rs,c>r∗c (t̂
∗)} x

∗
s,c < qc.

Overall, if f has a �xed point t̃∗ = f(t̃∗), its truncation t∗ = trunc(t̃∗) (or its adjustment t̂∗)

is an exact competitive equilibrium price vector for allocation x∗
s = ds(t

∗) and budgets b∗s for

all s ∈ S.

Though, the �xed point of operator f might fail to exist. Following Budish (2011), we

de�ne a �convexi�cation� of f , F : T̃ → T̃ , by

F (t̃) = co{y : ∃ a sequence t̃w → t̃, t̃ ̸= t̃w ∈ T̃ such that f(t̃w) → y},

where co denotes the convex hull of the set. F is nonempty, T̃ is compact and convex, and

F (t) is convex. From Lemma 2.4 of Cromme and Diener (1991), F is an upper hemicon-

tinuous correspondence and hence has a �xed point by Kakutani's �xed point theorem. We

denote a �xed point by t̃∗ ∈ F (t̃∗), and let again t∗ = trunc(t̃∗) be its truncation.

Note that the reduction of the MR-dimensional space of prices {pc,r}c∈C,r∈R to M -

dimensional space T̃ = [−1, Rb+1]M allows us to use the steps of Budish (2011) to establish

the existence of a (
√
kM/2, β)-Pseudo-Market Equilibrium with Priorities for any β > 0.

For completeness, we provide adapted steps in Appendix B.

Proof of Theorem 3. Let (x∗, p∗, b∗) be a (α, β)-Pseudo-Market Equilibrium with Prior-

ities. Suppose that allocation y Pareto dominates allocation x∗ and has the same number

of course seats assigned for each course. Then, there is a student s′ who strictly prefer
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allocation y to x∗. In addition,

∑
c∈C

p∗c,rs′,cys′,c > b∗s′ ≥
∑
c∈C

p∗c,rs′,cx
∗
s′,c.

For the other students we must also have

∑
c∈C

p∗c,rs,cys,c ≥ b∗s ≥
∑
c∈C

p∗c,rs,cx
∗
s,c

as we assume that students have strict preferences among course schedules. Summing the

above inequalities over all agents, we obtain

∑
s∈S

∑
c∈C

p∗c,rs,cys,c >
∑
s∈S

∑
c∈C

p∗c,rs,cx
∗
s,c.

We can further rearrange

∑
c∈C

R∑
r=1

p∗c,r
∑

{s:rs,c=r}

ys,c >
∑
c∈C

R∑
r=1

p∗c,r
∑

{s:rs,c=r}

x∗
s,c.

Hence, we obtain

0 <
∑
c∈C

R∑
r=1

p∗c,r
∑

{s:rs,c=r}

(ys,c−x∗
s,c) =

∑
c∈C

R∑
r=2

(p∗c,r−p∗c,r−1)
∑

{s:rs,c≥r}

(ys,c−x∗
s,c)+p∗c,1

∑
{s:rs,c≥1}

(ys,c−x∗
s,c).

As the number of course seats allocated to students for allocations y and x∗ is the same, the

last term equals zero. Also, p∗c,r − p∗c,r−1 ≤ 0, and we must have
∑

{s:rs,c≥r}(ys,c − x∗
s,c) < 0

for at least some course c and rank r. This implies yc ⪰̸c x∗
c and that allocation x∗ is

approximately priority-constrained e�cient.

Proof of Theorem 4. We assume that β ≤ 1
k−1

and show that the Pseudo-Market with

Priorities mechanism has schedule envy bounded by a single course among students of the

same or lower levels of priority. Let us consider two students s, s′ ∈ S such that rs,c ≥ rs′,c

for all c ∈ C. We denote the prices faced by s and s′ in market equilibrium as p∗s = {p∗c,rs,c}c∈C
and p∗s′ = {p∗c,rs′,c}c∈C, and the course schedule assigned in market equilibrium to student s′

as x∗
s′ = (cj1 , ..., cjk′ ) for j1, ..., jk′ ∈ {1, ...,M} and k′ ≤ k. Suppose that s envies student s′
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and that this envy is not bounded by one course. Therefore, student s is not able to a�ord

the course schedule of student s even if one course from schedule x∗
s′ is dropped. That is,

p∗s · x∗
s′\{cjℓ} > b∗s,

for ℓ = 1, ..., k′. Since s′ has the same or lower priority, we have p∗s′ ≥ p∗s and

p∗s′ · x∗
s′\{cjℓ} > b∗s,

for ℓ = 1, ..., k′. Summing these inequalities over ℓ and using b∗s′ ≥ p∗s′ · x∗
s′ , we obtain

(k′ − 1)b∗s′ ≥ (k′ − 1)p∗s′ · x∗
s′ > k′b∗s.

The latter implies
b∗
s′
b∗s

> k′

k′−1
≥ k

k−1
≥ 1+β, which contradicts how budgets are allocated.

Proof of Theorem 5. To prove the statement of the theorem, we �rst formally de�ne a

direct mechanism, a semi-anonymous direct mechanism, and the property of being strategy-

proof in the large. Then, we show that the PMP mechanism is a semi-anonymous direct

mechanism that is envy-free but for tie-breaking. The result then follows from Appendix C

in Azevedo and Budish (2019).

Consider a sequence of markets labeled by the number of students |SN | ≡ N .30 We

assume that the set of courses C is �xed with the number of courses equal to M , but the

capacity of each course qNc can vary. An allocation x ∈ XN
0 ≡ {0, 1}MN speci�es schedule

xs for each student s ∈ SN . Also, X = ∆X0 denotes the set of random course allocations.

Each student s has a type vs = (⪰s, rs) that describes her preferences over course ⪰s and her

priorities rs. The set of all possible types is denoted as V . We assume that each student can

misrepresent her preferences, but not her priorities. Each student has also a von Neumann-

Morgenstern utility function uv : X → [0, 1] that is consistent with type v ∈ V .
We consider a sequence of direct mechanisms {ΦN}N∈N that for each report of student

preferences assigns a distribution over course allocations; that is, ΦN : VN → ∆(XN
0 ). The

PMP mechanism is a typical example of a semi-anonymous direct mechanism where agents

are divided into groups, agents within each group are treated the same way, but agents across

the groups can be treated di�erently. Formally, we partition SN into groups according to

their course priorities SN
r1,r2,...,rM

, where rj ∈ {1, ..., R}, j = 1, ...,M . This partition collects

30We slightly depart from the notation of the main text where we labeled the number of students as S.

36



students who have the same level of priority for all courses in one group. The students in the

same group face the same prices in the PMP mechanism and the same budget distribution.

To de�ne the property of a direct mechanism being strategy-proof in the large, we consider

function ϕN : V ×∆V → X for each N according to

ϕN(vs,m) =
∑

v−s∈VN−1

ΦN
s (vs, v−s)Pr(v−s|v−s ∼ iid(m)),

where ΦN
s (vs, v−s) denotes the course schedule obtained by student s when she reports type

vs and all other students report v−s. Pr(v−s|v−s ∼ iid(m)) denotes the probability that pro-

�le v−s is realized when other students' types v−s are independent and identically distributed

according to m ∈ ∆V . In other words, ϕN(vs,m) describes the random outcome that stu-

dent s expects to receive when she reports vs and the other students' types are distributed

independently and identically according to m�and they report their types truthfully. Using

this notation, we have the following de�nition.

De�nition A1. The direct semi-anonymous mechanism {ΦN}N∈N is strategy-proof in the

large if, for any random distribution of reports by other students m ∈ ∆V that has full

support and ε > 0, there exists n0 such that, for all n ≥ n0 and all v′s, vs ∈ V where

students can misrepresent only their preferences, but not priorities, we have uvs [ϕ
N(vs,m)] ≥

uvs [ϕ
N(v′s,m)].

In other words, in a large enough market, reporting preferences truthfully is approximately

optimal, for any independent and identical distribution of the other students' types that has

full support. Note that students can misrepresent only their preferences, but not priorities.

The PMP mechanism also assigns budgets bs that can represented through lottery number

ℓs, which is uniformly distributed from [0, 1] as bs = 1 + ℓsβ. Because budgets are random,

the outcome of the PMP mechanism for each v ∈ VN can be represented as ΦN(v) =∫
ℓ∈[0,1]N xN(v, ℓ)dℓ, where xN(v, ℓ) ∈ {0, 1}MN assigns a course schedule to each student in

SN . De�nition 5 guarantees that any student who has a larger budget bs (a large lottery

number ls) prefers her course schedule to any course schedule assigned to a student in the

same group. As a result, the PMP mechanism is a semi-anonymous mechanism that is

envy-free but for tie-breaking, which is de�ned as follows (see Azevedo and Budish, 2019).
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De�nition A2. A direct semi-anonymous mechanism {ΦN}N∈N is envy-free but for tie-

breaking if for each N there exists xN : VN × [0, 1] → ∆(XN
0 ), symmetric over its coordinates,

such that ΦN(v) =
∫
l∈[0,1]N xN(v, l)dl, and, for all s, s′, N, v, and ℓ, if ℓs ≥ ℓs′, and vs and vs′

belong to the same group, then uvs(x
N
s (v, ℓ)) ≥ uvs(x

N
s′ (v, ℓ)).

Appendix C in Azevedo and Budish (2019) provides an argument explaining why any semi-

anonymous mechanism that is envy-free except for tie-breaking is strategy-proof in the large.

This completes the proof of the theorem.
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(For Online Publication)

B Proof of Theorem 1 (Omitted Details)

We have shown in the main text how the arguments of Steps 1-3 of Theorem 1 of Budish

(2011) need to be modi�ed for the setting with priority-speci�c course prices. The adaptation

of Steps 4-9 closely follows the original proof. However, we �rst establish that it is possible to

choose budgets bs and τs,xs such that at most M budget constraints intersect for any t̃ ∈ T̃ .

Lemma B1. One can choose taxes {τs,xs}s∈S,xs⊆C that satisfy the following conditions:

(i) Taxes are small (−ε < τs,xs < ε);

(ii) Taxes favor more preferred bundles (τs,xs > τs,x′
s
for x′

s ≻s xs);

(iii) The inequality bounds are preserved (−1 ≤ mins,xs(bs + τs,xs) ≤ maxs,xs(bs + τs,xs) ≤
1 + β);

(iv) No perturbed budgets are equal (bs + τs,xs ̸= bs′ + τs′,xs′
);

(v) There is no auxiliary price vector t̃ ∈ T̃ at which more than M budget constraints

H(s, xs) intersect.

Proof. Let us �x x = {xs}s∈S . Budish (2011) establishes the possibility to choose {τs,xs}s∈S,xs⊆C

that satisfy the �rst four conditions. We now establish that it is always possible to slightly

change taxes such that condition (v) is also satis�ed.

For this purpose, let us assume that more than M budget constraints H(s, xs) intersect

and denote

I = {s ∈ S : ∩sH(s, xs) ̸= ∅} ,

with |I| > M. For each t̃ ∈ T̃ , consider prices
{
pc,r(t̃)

}
c∈C,r∈R de�ned by equation (A.1) and

the cuto�s de�ned by (A.2). The de�nition of cuto�s r∗c (t̃) implies that

∀s ∈ I, c ∈ C : rs,c > r∗c (t̃), xs,c · pc,rs,c(t̃) = 0.

In addition, the de�nition of cuto�s implies that pc,rs,c ≥ b for 1 ≤ rs,c < r∗c (t̃). Therefore, a

seat in course c is not allocated to agent s for rs,c < r∗c (t̃); that is, xs,c = 0. Hence, we have
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also

∀s ∈ I, c ∈ C : rs,c < r∗c (t̃), xs,c · pc,rs,c(t̃) = 0.

Therefore, we obtain that xs,c ·pc,rs,c(t̃) might be non-zero only if rs,c = r∗c (t̃). That is, entries

in agent s's budget constraint, s ∈ I, are non-zero only if rs,c = r∗c (t̃). Denote pc(t̃) ≡ pr∗c (t̃).

Hence, we obtain that the set of equations {s ∈ I : H(s, xs) = 0} is the set of linear equations
with coe�cients xs,c ∈ {0, 1}:


xs,1 · p1(t̃) + xs,2 · p2(t̃) + ...+ xs,M · pM(t̃) = bs + τs,xs

.... ....

xs′,1 · p1(t̃) + xs′,2 · p2(t̃) + ...+ xs′,M · pM(t̃) = bs′ + τs′x

for s, s′ ∈ I. Since |I| > M for any t̃ ∈ T , there are at most M independent linear equations

of prices. So, the Rouché�Capelli theorem implies that we can choose τs,xs such that only at

most M equations are satis�ed for any t̃.31

Step 4. Similar to Theorem 1 of Budish (2011), if the price vector t∗ is not on any

budget constraint, then t∗ is an exact competitive equilibrium price vector. Suppose that t∗

is not on any budget constraint. Then, there is a neighborhood around t∗ where each agent's

demand is unchanging in price. At price t∗, f is continuous, and as a result, F (t∗) = f(t∗).

� If t∗ = t̃∗, then F (t̃∗) = F (t∗) = f(t∗) and, thus, t∗ = t̃∗ ∈ F (t̃∗) = f(t̃∗). Therefore, t∗

is a �xed point. Hence, as we established earlier, it is an exact competitive equilibrium

price vector.

� If t∗ ̸= t̃∗, we establish the following lemma.

Lemma B2. For any t̃ ∈ T̃ \ T , (i) f(t̃) = f(trunc(t̃)) and (ii) F (t̃) ⊆ F (trunc(t̃)).

Proof. Statement (i) follows from the de�nition of f . For statement (ii), consider

a point y for which there exists a sequence t̃w → t̃, t̃w ̸= t̃ such that f(t̃w) → y.

Consider trunc(t̃w). As trunc(·) is continuous, this sequence will converge to trunc(t̃).

Statement (i) implies f(trunc(t̃w)) converges to y. As a result, y ∈ F (t̃) implies that

y ∈ F (trunc(t̃)) and, thus, F (t̃) ⊆ F (trunc(t̃)).

31Note that when we change τs,xs , some other budget constraints might start intersecting. Since the set
of possible intersecting budget constraints is �nite and τs,xs

varies continuously, we can always choose τs,xs

without in�uencing the intersection property of the other budget constraints.
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As a result, since F (t∗) = f(t∗) and t̃∗ ∈ F (t̃∗), t̃∗ ∈ F (t∗) = f(t∗) = f(t̃∗) and, thus,

t̃∗ = f(t̃∗). Therefore, t∗ is an exact competitive equilibrium price vector.

Step 5. Next, suppose that t∗ is on 1 ≤ L ≤ M budget constraints. We denote Φ =

{0, 1}L and construct a set of 2L price vectors {tϕ}ϕ∈Φ that satisfy the following conditions:

1. Each tϕ is close enough to t∗ such that there is a path from tϕ to t∗ that does not cross

any budget constraint.

2. Each tϕ is on the �a�ordable� side of the ℓth budget constraint if ϕℓ = 0 and is on the

�una�ordable� side if ϕℓ = 1.

To construct vectors {tϕ}ϕ∈Φ, note that each of the L intersecting budget constraints de�nes

two sets:

H0
ℓ =

{
t̃ ∈ T̃ :

∑
c∈C

xsℓc max(t̃c − (rsℓ,c − 1)b, 0) ≤ bsℓ + τsℓ,xsℓ

}

H1
ℓ =

{
t̃ ∈ T̃ :

∑
c∈C

xsℓcmax(t̃c − (rsℓ,c − 1)b, 0) > bsℓ + τsℓ,xsℓ

}

The �rst set delineates the set of prices for which agent sℓ can a�ord schedule xsℓ , whereas

the second set delineates the set of prices for which agent sℓ can't a�ord xsℓ . Let ϕ =

(ϕ1, ..., ϕL) ∈ Φ be an L-dimensional vector of zeros and ones, and the polytope π(ϕ) :=

∩L
ℓ=1H

ϕℓ

ℓ be the set of points in T that belongs to the intersection of sets indexed by ϕ. Let

H = {H(s, xs)}s∈I,xs⊆C be the �nite set of all budget constraints formed by any student-

schedule pair (s, xs). We then de�ne

δ < inf
t̃′′∈T ,H∈H

{||(t∗ − t̃′′)||2 : t̃′′ ∈ H, t∗ /∈ H},

which denotes the distance such that any budget constraint that t∗ does not belong to is

further than δ away from t∗. Let Bδ(t
∗) be a δ-ball of t∗. Now, for each ϕ ∈ Φ we de�ne

t̃ϕ to an arbitrary element of π(ϕ) ∩Bδ(t
∗). Such price vectors satisfy the two requirements

outlined above.

Step 6. We now show that a perfect market-clearing excess demand vector lies in the

convex hull of {z(tϕ)}ϕ∈Φ. For this purpose, we �rst show that for any y ∈ F (t∗), we must
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have y = t∗+
∑

ϕ∈Φ λϕz(tϕ), where
∑

ϕ∈Φ λϕ = 1. Take some y ∈ F (t∗). Consider a sequence

tw → t∗, t∗ ̸= tw ∈ T̃ such that f(tw) → y′. Note that the sequence tw consists of a �nite

number of subsequences tw,ϕ ∈ π(ϕ) ∩ Bδ(t
∗) for some ϕ ∈ Φ.32 Since all elements of the

subsequence tw,ϕ are on the same side of set Hϕ
ℓ , every agent has the same choice at every

point. Hence, if the subsequence has an in�nite number of elements, we must have tw,ϕ → t∗

and

f(tw,ϕ) → t∗ + γz(tϕ).

Therefore, the limit of f(tw) for the original sequence tw must be also t∗ + γz(tϕ
′
) for some

ϕ′ ∈ Φ. So, y′ = t∗ + γz(tϕ
′
). Since, by de�nition, y is a convex combinations of such y′, we

must have y = t∗ +
∑

ϕ∈Φ λϕz(tϕ), where
∑

ϕ∈Φ λϕ = 1.

Lemma B2 implies that t̃∗ ∈ F (t̃∗) ⊆ F (t∗). Hence, we must have

t̃∗ = t∗ +
∑
ϕ∈Φ

λϕz(tϕ).

for some {λϕ}ϕ∈Φ with
∑

ϕ∈Φ λϕ = 1. We also denote

ζ =
∑
ϕ∈Φ

λϕz(tϕ) =
t̃∗ − t∗

γ
.

We note that ζ ≤ 0 and ζc < 0 imply t∗c = 0. Hence, vector ζ is a perfect market-clearing

excess demand vector, and it lies in the convex hull of {z(tϕ)}ϕ∈Φ.

Steps 7-9. The structure of excess demand has the same geometric structure as in

Budish (2011). In particular, denote L′ as the number of agents whose budget constraints

intersect at price t∗. We rename agents such that s = 1, ..., L′. We denote the number of

budgets of student s that intersect at t∗ as ws. Since at most M budgets constraints can

intersect, we must have L ≡
∑L′

s=1ws ≤ M . We also denote the bundles pertaining to s's

budget constraints as x1
s ≻ ... ≻ xws

s .

Similarly to Budish (2011), we consider bundles that s demands at prices near t∗. In the

set H0(s, x1
s), agent s can purchase her favorite bundle x1

s. Hence, one does not need to know

whether prices belong to sets H0(s, x2
s), ..., H

0(s, xws
s ). Let us denote the demand for prices

at H0(s, x1
s) ∩ Bδ(t

∗) ∩ T̃ as d0s. Similarly, we consider prices in H1(s, xm
s ) ∩ H0(s, xm+1

s )

32Some subsequences can have only a �nite number of elements.
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and denote the corresponding demands as dms for m = 1, ..., ws. Overall, agent s = 1, ..., L′

purchase ws + 1 distinct bundles at prices near to t∗.

Let us denote the excess demand of the remaining agents as

zS\{1,...,L′}(t
∗) =

S∑
s=L′+1

ds(t
∗)− q.

Hence, a perfect market-clearing excess demand vector lies in the convex hull of {z(tϕ)}ϕ∈Φ
with the elements

zS\{1,...,L′}(t
∗) +

L′∑
s=1

ws∑
f=1

afsd
f
s

where 0 ≤ afs ≤ 1, s = 1, ..., L′, f = 1, ..., ws and
∑ws

f=1 a
f
s = 1, s = 1, ..., L′. Budish (2011)

shows in Step 8 of Theorem 1 that there exists a vertex of the above geometric structure

that is within
√

kM/2 distance from the perfect market-clearing excess demand vector. He

also explains how to adjust agent budgets to �nd an approximate competitive equilibrium.

These purely mathematical arguments remain unchanged from the original paper.

C Appendix: A Simple Student Utility Model

This section describes the calibration of the simple student utility model introduced in Sec-

tion 4.1 based on the real-world university data. The data contains information about

students from seven colleges a = A, ..., G and four years of study y = 1, ..., 4.33 The model

assumes that the utility of student s from college a and year of study y for taking course c

from college a′ equals

usc = θaya′ + εsc,

where θaya′ is a �xed component and εsc is a random component with εsc ∼ N(0, σ) being

independently and normally distributed random variables with zero mean and variance σ.

Student's utilities are additive across courses. The outside option is normalized to 0. The

standard deviation of the noise is normalized to one as well σ = 1.

Each student's choice set is limited up to 80 courses. The courses in student's choice set

are drawn randomly such that the probability that a course from college a′ is drawn equals

33There are �ve years of study observed in the actual university data. We unite students in year four and
year �ve cohorts as there are only a few students in year �ve cohort for some colleges.
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the share of students from the same college-year who are enrolled to courses in college a′ in

the actual data. In addition, if the number of courses taken by college-year students in a

given college is fewer than ten, the student choice sets are additionally enlarged by courses

of the same or the next level in the same department.

Before we describe the process of how we calibrate the utility parameters, some discus-

sion is necessary. The standard discrete choice identi�cation techniques cannot be used to

calibrate the student utility model, as the student choice sets are unobserved. We do not

observe individual student's past enrollment and, hence, the set of courses for which the

student satis�es course prerequisites. In addition, the student's choice set during the course

allocation process is in�uenced by the courses chosen by the other students who are more se-

nior or have earlier time-slots and, hence, students' choice sets are determined endogenously.

There are also complications associated with the changing course reserves during the course

allocation process described in detail in Section 4.1.

This forces us to take a stand on how student's choice sets are formed. We assume that

courses are drawn in proportion to the number of courses assigned in the actual data in order

to mimic closely unobserved choice sets.34 However, any changes in the way we draw the

course lists could potentially change the calibrated parameter values. Crawford, Gri�th,

and Iaria (2021) provide an insightful discussion of preference estimation techniques with

unobserved choice sets. We also want to mention that it is not clear whether increasing

the size of the course lists is relevant as the previous studies report that students typically

consider only a limited subset of courses in a given semester (see Budish and Cantillon,

2012; Diebold and Bichler, 2017). We explore how the performance of the four allocation

mechanisms changes for various sizes of choice sets (and the size of the noise parameter)

using simulations in Appendix D.3.

Course reserves adjustments. We use simulations to calibrate student utility param-

eters. However, we need �rst to perform adjustments to course reserves. Course reserves

are typically set large at the beginning of the course allocation process and relaxed at later

stages. Hence, the �nal course allocation could violate the initial course reserves. In fact,

34We also considered an alternative model on how students' choice sets are formed. We assumed that
each student has a �xed choice set that coincides with the set of courses taken by at least one students
from the same department-year in the data. For some department-years, the choice set might be as large as
150 courses. The calibration of this modelled to the results in which many students enroll in the maximum
possible number of courses k = 5 and some students enroll in a few or even zero courses, which signi�cantly
di�ers from the distribution of the number of courses taken by student in the data.
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170 out of 756 courses violate initial course reservations in the data.

We perform the minimum course reserve adjustment using the following procedure. Con-

sider a course with multiple reserves based on the year and department of students (see

Table 3 in Section 4.1) and the �nal course allocation. Determining if the set of students

assigned to the course can satisfy course reservation constraints is di�cult, as a student can

be attributed to several reservations. For example, a course can have one reservation for

students of any year of study in a certain department and another reservation for students

in a certain year of study and a given set of departments. It might not be clear to which

reservation one should attribute each student. We use the Hall's Marriage Theorem, which

provides the necessary and su�cient condition for the existence of a matching where each

student is assigned exactly one seat in the course and satis�es course reserves. We explain

the details in Supplementary Materials. Once we identify course reserve violations, we reduce

the number of reserves one at a time, starting with reservations for larger years of study,

until the course allocation satis�es course reserve constraints. In addition, we decrease the

number of reserved seats for the courses in colleges A and B by 15%. The departments

in these colleges typically assign course reserves only to their students and the number of

reserved seats is close to the full course capacity. This additional adjustment appears to be

necessary for a stable behavior of the calibration process.

Calibration. To calibrate parameters θaya′ , a, a′ = A, ..., G, y = 1, ..., 4, we use the

Random Serial Dictatorship with set-asides, the adjusted course reserves, the order in which

students choose the courses in the university data, and the �nal course allocation. The

calibration proceeds as follows.

� Before the start of the process, we draw 100 times 80-long course lists with non-zero

utilities for each student. We also draw 100 vectors of random utility components. If

we denote the number of students as S = 6023, there are in total S × 100× 80 draws

of εsc. We �x these draws throughout the calibration process.

� For given parameters θ, we calculate student utilities usc using the random components.

� For each j = 1, ..., 100 we calculate the outcome of the Random Serial Dictatorship with

set-asides taking the order of student choices provided in the data and the adjusted

course reserves. We also calculate the aggregate matching on the college-year-college

level to obtain mj
aya′ - the number of students from college-year (a, y) assigned to
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courses at college a′. There are 7× 4× 7 matching student numbers.

� We average the matching matrices across random draws m = 1
100

∑
j m

j to obtain the

average aggregate matching on college-year-college level.

� We compare the aggregate matching in the data mDATA (see Table C1) with m and

adjust each θaya′ proportionally to the di�erence in the number of students assigned

λ
mDATA

aya′ −maya′

mDATA
aya′

,

where λ > 0 is the size of the adjustment step.

� For adjusted parameters θ, we recalculate matching m. Then, we evaluate the utility

parameters based on the objective ||mDATA−m||2. If the adjustment leads to a smaller

value of the objective, we keep the new parameters and proceed to the next step. If

the value of the objective becomes larger or the change in the objective is small, we

decrease the size of the adjustment step λ, and recalculate matchingm.35 We terminate

the algorithm if the objective is less than 1 or improves less than 1% during the six

consecutive iterations.

Table C2 presents the parameters of the simple utility model calibrated using the above

procedure. Each table shows parameters θ for students from one college. Each cell in

each table presents the average utility of students for each year of study (column) taking

courses from each college (raw). When no students from the college-year (a, y) are assigned

to courses at college a′ in the data, we leave the corresponding parameter as NA. For the

calibrated parameters, the student utility model �ts well the observed aggregate matching

with ||mDATA −m||2 < 1.

Several points need to be highlighted about the calibrated values. First, the parameters

corresponding to courses from the same college are typically the largest among seven colleges.

The revealed preferences argument also implies that students should prefer to take courses

from their own colleges. The only exception is college C, which does not o�er �rst-year

courses (all of its courses correspond to interdisciplinary programs).

Second, many parameters are smaller than 0, implying that the value of the outside op-

tion could be an important factor in a student's choice. To explore this point in more detail,
35The threshold for the change in the objective is 5% for Years 3 and 4 and 1% for Years 1 and 2.
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we consider an alternative normalization, in which the average student utility from taking

the course from the same college is normalized to 1 and the value of the outside option can

vary with respect to the year of study and student college. The value of the outside option

corresponds to the value of taking non-semester-long courses, doing a part-time job (which is

relevant for more senior students), or engaging in extracurricular activities. The alternative

normalization results in a parallel shift in utilities, which does not change the calibration

as it does not change the outcomes of the RSD mechanism. At the same time, the alter-

native normalization does have implications for the welfare comparison across mechanisms

we explore in Appendix D. The calibrated parameters for an alternative normalization are

presented in Table C3.

Finally, we want to note that one should be careful interpreting the above utility param-

eters. First, we consider only the calibration of the student utility model. We do not have an

identi�cation result. Second, the model speci�es student utility only at the college-year level.

This is not very precise, as there are many departments within each college and each depart-

ment typically has several majors. Third, the model cannot disentangle student preferences

from physical course enrollment constraints such as course prerequisites, schedule time, and

location. To truly identify student preferences, one should consider a more �ne-tuned model

that can separate student preferences from physical constraints. We leave this exciting, but

di�cult exercise for future research.
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College A

Year 1 Year 2 Year 3 Year 4
A 565 514 448 439
B 2 3 4 4
C 5 17 11 19
D 189 98 68 109
E 22 13 7 5
G 22 30 34 51
F 8 21 20 24

College B

Year 1 Year 2 Year 3 Year 4
A 13 19 23 62
B 431 931 770 596
C 2 10 5 21
D 293 311 242 303
E 657 331 111 88
G 244 169 192 153
F 25 64 63 104

College C

Year 1 Year 2 Year 3 Year 4
A 18 31 28 33
B 3 2 3 6
C 0 1 22 25
D 86 113 95 105
E 99 123 58 34
G 41 41 43 38
F 0 7 12 7

College D

Year 1 Year 2 Year 3 Year 4
A 11 22 35 60
B 4 11 25 11
C 3 11 9 20
D 901 949 927 550
E 293 178 90 61
G 161 168 191 156
F 21 141 118 76

College E

Year 1 Year 2 Year 3 Year 4
A 6 6 6 18
B 27 27 11 12
C 0 1 1 2
D 167 172 189 184
E 492 529 361 203
G 142 130 122 80
F 3 14 18 27

College F

Year 1 Year 2 Year 3 Year 4
A 1 11 15 15
B 19 12 11 10
C 1 5 14 4
D 232 173 140 118
E 167 153 133 57
G 447 504 369 173
F 8 28 20 10

College G

Year 1 Year 2 Year 3 Year 4
A 7 8 4 12
B 1 4 1 3
C 0 1 2 3
D 313 132 138 138
E 125 30 21 2
G 50 32 21 37
F 192 425 320 285

Table C1: The aggregate matching observed in the data. Each table presents the matching for students
from one college. Each cell presents the number of seats occupied by students from year of study (column)
in courses from given college (raw).
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College A

Year 1 Year 2 Year 3 Year 4
A -0.20 -0.95 -1.30 -1.53
B -1.58 -1.73 -2.00 -2.07
C -2.05 -1.33 -1.60 -1.35
D -1.20 -1.74 -1.77 -1.82
E -1.74 -1.84 -1.83 -2.09
G -1.69 -1.77 -1.67 -1.80
F -1.96 -1.26 -1.73 -1.84

College B

Year 1 Year 2 Year 3 Year 4
A -1.92 -1.63 -1.78 -1.83
B -0.70 -0.59 -1.19 -1.47
C -2.51 -1.85 -2.16 -1.68
D -1.58 -1.59 -1.66 -1.83
E -1.09 -1.31 -1.65 -1.84
G -0.98 -1.61 -1.68 -1.85
F -1.96 -1.64 -1.71 -1.82

College C

Year 1 Year 2 Year 3 Year 4
A -0.78 -1.22 -1.19 -1.67
B -1.14 -1.24 -1.60 -1.43
C -1.81 -2.14 -0.18 -0.50
D -1.05 -1.42 -1.47 -1.68
E -0.90 -1.32 -1.43 -1.68
G -0.40 -1.36 -1.49 -1.71
F -0.99 -1.25 -1.49 -1.39

College D

Year 1 Year 2 Year 3 Year 4
A -1.62 -1.40 -1.52 -1.63
B -1.76 -1.36 -1.59 -1.62
C -2.31 -1.59 -1.77 -1.30
D -0.91 -1.29 -1.38 -1.60
E -1.24 -1.40 -1.56 -1.67
G -1.07 -1.40 -1.51 -1.61
F -1.58 -1.37 -1.50 -1.61

College E

Year 1 Year 2 Year 3 Year 4
A -1.57 -1.80 -1.79 -1.72
B -1.31 -0.95 -1.51 -1.44
C -2.52 -2.53 -2.31 -2.12
D -1.42 -1.60 -1.60 -1.67
E -1.02 -1.21 -1.44 -1.61
G -1.05 -1.37 -1.57 -1.71
F -2.22 -1.51 -1.71 -1.70

College F

Year 1 Year 2 Year 3 Year 4
A -1.91 -1.65 -1.82 -1.40
B -1.26 -1.52 -1.71 -1.61
C -2.42 -1.96 -1.52 -1.96
D -1.25 -1.71 -1.79 -1.83
E -1.38 -1.58 -1.47 -1.70
G -0.48 -1.16 -1.39 -1.67
F -2.05 -1.77 -1.82 -1.61

College G

Year 1 Year 2 Year 3 Year 4
A -1.96 -1.73 -1.83 -1.99
B -2.22 -1.91 -2.21 -2.32
C -2.43 -2.03 -2.01 -2.19
D -0.62 -1.49 -1.47 -1.62
E -1.07 -1.62 -1.55 -2.44
G -1.39 -1.64 -1.66 -1.82
F -0.82 -0.68 -0.93 -1.21

Table C2: The calibrated parameters of the simple student utility model with zero outside option. Each
table presents the utility parameters for students from one college. Each cell presents the utility of students
from one year of study (column) taking courses from one college (raw).
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College A

Year 1 Year 2 Year 3 Year 4
A 1.00 1.00 1.00 1.00
B -0.38 0.22 0.30 0.46
C -0.86 0.62 0.70 1.18
D 0.00 0.22 0.53 0.71
E -0.54 0.12 0.47 0.44
G -0.49 0.18 0.63 0.73
F -0.76 0.70 0.57 0.69
O 1.20 1.95 2.30 2.53

College B

Year 1 Year 2 Year 3 Year 4
A -0.22 -0.04 0.40 0.64
B 1.00 1.00 1.00 1.00
C -0.81 -0.26 0.02 0.79
D 0.11 -0.01 0.53 0.64
E 0.60 0.27 0.54 0.64
G 0.72 -0.03 0.51 0.63
F -0.26 -0.05 0.47 0.65
O 1.70 1.59 2.19 2.47

College C

Year 1 Year 2 Year 3 Year 4
A 2.03 1.92 -0.01 -0.18
B 1.67 1.90 -0.42 0.07
C NA 1.00 1.00 1.00
D 1.77 1.72 -0.29 -0.18
E 1.91 1.82 -0.25 -0.19
G 2.42 1.78 -0.31 -0.21
F NA 1.89 -0.31 0.11
O 2.81 3.14 1.18 1.50

College D

Year 1 Year 2 Year 3 Year 4
A 0.30 0.89 0.86 0.97
B 0.16 0.93 0.80 0.98
C -0.40 0.70 0.61 1.30
D 1.00 1.00 1.00 1.00
E 0.68 0.89 0.83 0.93
G 0.85 0.89 0.88 0.99
F 0.33 0.92 0.88 0.99
O 1.91 2.29 2.38 2.60

College E

Year 1 Year 2 Year 3 Year 4
A 0.44 0.41 0.65 0.89
B 0.71 1.26 0.93 1.17
C NA -0.32 0.13 0.49
D 0.60 0.61 0.84 0.94
E 1.00 1.00 1.00 1.00
G 0.97 0.84 0.87 0.90
F -0.20 0.70 0.73 0.91
O 2.02 2.21 2.44 2.61

College F

Year 1 Year 2 Year 3 Year 4
A -0.43 0.51 0.58 1.27
B 0.22 0.64 0.68 1.06
C -0.94 0.20 0.88 0.71
D 0.23 0.46 0.61 0.84
E 0.10 0.59 0.92 0.97
G 1.00 1.00 1.00 1.00
F -0.57 0.39 0.58 1.06
O 1.48 2.16 2.39 2.67

College G

Year 1 Year 2 Year 3 Year 4
A -0.14 -0.05 0.10 0.22
B -0.40 -0.23 -0.29 -0.11
C NA -0.36 -0.09 0.01
D 1.20 0.19 0.46 0.59
E 0.75 0.05 0.37 -0.23
G 0.43 0.04 0.27 0.38
F 1.00 1.00 1.00 1.00
O 1.82 1.68 1.93 2.21

Table C3: The calibrated parameters of the simple student utility model with variable. Each table presents
the utility parameters for students from one college. Each cell presents the utility of students from one year
of study (column) taking courses from one college (raw). The last raw shows the values of the outside option.
The utility parameters corresponding to courses from the same college are normalized to one.
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D Appendix: Additional Simulations

This section presents simulation results not present in the main text. Section D.1 supplies

additional tables for the results in Section 4.3. In addition, we provide simulation results

for the simple utility model with variable outside options (see Table C3). Both simulations

assume that year-speci�c priority takes precedence over department-speci�c priority. Section

D.2 supplements the main analysis by presenting the simulation results when department-

speci�c priority takes precedence over year-speci�c priority. Section D.3 provides additional

robustness checks by providing simulation results for several sizes of student choice sets and

the standard deviation of the noise utility parameter.

D.1 Year-First Priorities: Additional Results

Table D1 below presents the actual levels of the mean student utility and the standard

deviations of student utility for the analysis of Section 4.3. The simulated errors across runs

are reported in parentheses. Using the standard T-test, for each mechanism mech =PMP,

DA, DA(m), we test null hypothesis H0 : µmech = µRSD against the alternative Ha : µmech ̸=
µRSD. We supply the corresponding mean student utility values in Table D1 with stars if the

null hypothesis is rejected on 5% signi�cance level. In addition, we perform F-tests for zero

hypothesis H0 : σmech

σRSD
≥ 1 against the alternative Ha : σmech

σRSD
< 1 for each of 100 runs. We

supply the standard deviation of student utility with a star if the maximum p-value across

all 100 runs is less than 5%.

In addition, we provide simulation results for the simple utility model with variable

outside options. The university data contains several students who enroll in fewer than k = 5

courses. This is most common among students in their later years of study. To account for

that, we consider an alternative normalization, in which the average student utility from

taking the course from the same college is normalized to θaya = 1, a = A, ..., G, y = 1, .., 4

and the outside option for each student can vary with respect to the year of study and student

college (parameters θ presented in Table C3 in Appendix C). Our interpretation is that the

student's outside option corresponds to the value of enrolling in a non-semester-long course,

participating in extra-curricular activities, doing a part-time job for more senior students,

etc. If a student is enrolled in k′ < 5 courses, the student's utility is supplemented with

5− k′ values of the outside option.
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Mean Utility Year 1 Year 2 Year 3 Years 4

Pseudo-Market with Priorities 3.39*(0.04) 2.98*(0.04) 2.32*(0.03) 1.62*(0.03)

Random Serial Dictatorship
with optimal set-asides

3.17(0.04) 2.89(0.04) 2.29(0.03) 1.61(0.02)

Deferred Acceptance
with single tie-breaking

3.16(0.04) 2.91*(0.04) 2.31*(0.03) 1.62(0.02)

Deferred Acceptance
with multiple tie-breakings

3.06*(0.04) 2.89(0.04) 2.31*(0.03) 1.62(0.02)

St. Dev. of Utility Year 1 Year 2 Year 3 Years 4

Pseudo-Market with Priorities 1.482* 1.368 1.220 1.051

Random Serial Dictatorship
with optimal set-asides

1.669 1.409 1.227 1.051

Deferred Acceptance
with single tie-breaking

1.646 1.403 1.227 1.052

Deferred Acceptance
with multiple tie-breakings

1.505* 1.369 1.223 1.051

Table D1: The comparison of the four mechanisms using the simple utility model with zero outside op-

tion and with year-speci�c priorities taking precedence over department-speci�c priorities. The standard

simulated deviations across runs are presented in parentheses.

The comparison of the four mechanisms using the alternative normalization is presented

in Table D2. The major di�erence between Table D1 and Table D2 is the level of student

utilities. The numbers in Table D2 account for the student utility from activities outside

taking the courses. Inevitably, the student utility levels become higher. However, the abso-

lute di�erences between mean student utilities across the allocations of di�erent mechanisms

remain the same. The alternative normalization also in�uences the standard deviation of

student utility as the shift in student utilities di�ers by student college and year of study

(see Table C3). Note that we do not need to recalculate the results about student envy (see

Table 7) as they are not in�uenced by the alternative normalization.
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Mean Utility Year 1 Year 2 Year 3 Years 4

Pseudo-Market with Priorities 12.03*(0.04) 13.10*(0.04) 13.55*(0.03) 13.97*(0.03)

Random Serial Dictatorship
with optimal set-asides

11.81(0.04) 13.01(0.04) 13.51(0.03) 13.96(0.02)

Deferred Acceptance
with single tie-breaking

11.80(0.04) 13.03*(0.04) 13.53*(0.03) 13.97(0.03)

Deferred Acceptance
with multiple tie-breakings

11.70*(0.04) 13.01(0.04) 13.53*(0.03) 13.97(0.02)

St. Dev. of Utility Year 1 Year 2 Year 3 Years 4

Pseudo-Market with Priorities 2.022 1.984 1.671 1.571

Random Serial Dictatorship
with optimal set-asides

2.175 2.049 1.680 1.570

Deferred Acceptance
with single tie-breaking

2.155 2.042 1.677 1.570

Deferred Acceptance
with multiple tie-breakings

2.080 2.027 1.677 1.571

Table D2: The comparison of the four mechanisms using the simple utility model with variable outside

option and with year-speci�c priorities taking precedence over department-speci�c priorities. The standard

simulated deviations across runs are presented in parentheses.

D.2 Department-First Priorities

Some U.S. universities consider department-speci�c priorities as more important than those

based on year of study.36 Here, we present additional simulation results comparing the

performance of the four mechanisms assuming that department-speci�c priority takes prece-

dence over year-speci�c priority. We assume each course has eight priority levels, where

levels 5 through 8 correspond to students eligible for course reserves, and levels 1 through

4 correspond to students not eligible for course reserves. Note that the priority structure

directly in�uences the performance of the PMP, DA, and DA(m) mechanisms, but not the

RSD mechanism. However, the RSD mechanism relies on the calculation of the optimal

set-asides, which are also determined by the priority structure.

Simulation results. As in Section 4.3, we consider the Random Serial Dictatorship (RSD)

with optimal set-asides as a benchmark. Table D3 presents the performance of Pseudo-

36For example, Dartmouth College explicitly states these priorities on its website (see https://www.

dartmouth.edu/reg/registration/course_priorities.html).
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Mean Utility Year 1 Year 2 Year 3 Years 4

Pseudo-Market with Priorities 6.90% 3.66% 1.20% -0.25%

Deferred Acceptance
with single tie-breaking

1.49% 1.25% 0.43% -0.33%

Deferred Acceptance
with multiple tie-breakings

-0.33% 0.66% 0.29% -0.41%

St. Dev. of Utility Year 1 Year 2 Year 3 Years 4

Pseudo-Market with Priorities -7.14% -2.45% -0.69% -0.32%

Deferred Acceptance
with single tie-breaking

-0.58% 0.07% 0.05% -0.2%

Deferred Acceptance
with multiple tie-breakings

-6.35% -2.29% -0.34% -0.25%

Table D3: The performance of the Pseudo-Market with Priorities, Deferred Acceptance with single tie-

breaking, and Deferred Acceptance with multiple tie-breakings mechanisms compared to the benchmark of

Random Serial Dictatorship with optimal set-asides for each cohort of students and with department-speci�c

priorities taking precedence over year-speci�c priorities.

Market with Priorities (PMP), Deferred Acceptance mechanism with single (DA) and multi-

ple tie-breakings (DA(m)) compared to the benchmark over 100 simulation runs for di�erent

random utility draws.

The results are similar to the ones obtained in Section 4.3, with a slight change in

the magnitude. The main di�erences are for Years 1 and 4. The relative importance of

department-speci�c priorities pushes some senior students to a lower priority in PMP, DA,

and DA(m) mechanisms. The same does not happen for the RSD mechanism, as the order

in which students choose courses stays the same. As a result, there is an inferior allocation

and smaller average utility for these students (−0.25%,−0.33%, and −0.41%, respectively).

We also observe that �rst-year students receive slightly higher utility for DA and DA(m)

mechanisms for the same reason. The performance of the PMP mechanism stays the same

for these students.

The change in the standard deviation of student utilities stays almost the same as in

Section 4.3. The major di�erence is for Year 4, where all three mechanisms deliver a reduced

standard deviation versus the benchmark (−0.23%,−0.2%, and −0.25%, respectively). Un-

fortunately, these changes come with a decrease in the mean student utility as well. This is

associated with the fact that the three mechanisms operate under a di�erent set of constraints
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0 courses 1 course 2 courses 3 courses 4 courses 5 courses

Pseudo-Market with Priorities 98.69% 1.31% 0% 0% 0% 0%

Random Serial Dictatorship
with optimal set-asides

93.61% 5.62% 0.68% 0.09% 0.008% 0.0005%

Deferred Acceptance
with single tie-breaking

94.39% 5.02% 0.54% 0.05% 0.003% 0%

Deferred Acceptance
with multiple tie-breakings

95.05% 4.78% 0.17% 0.003% 0% 0%

Table D4: The percentage of students who experience envy towards students of the same or lower priority

for the four mechanisms with department-speci�c priorities taking precedence over year-speci�c priorities.

The �rst column shows the information about students who experience no envy. The other columns show

the percentage of students who experience envy bounded by 1, ..., 5 courses.

than the RSD benchmark.

The results regarding the percentage of students who experience envy are similar to those

in the main part of the paper (see Table D4). The PMP mechanism leads to outcomes in

which no student envies the schedule of any other student of the same or lower priority by

more than a single course. No other mechanism satis�es such a property. Additionally, the

PMP mechanism has the smallest percentage of students who experience envy bounded by

a single course among the four mechanisms.

D.3 Additional Simulations: Comparative Statics

This section performs some additional robustness exercises. We take the student utility

model calibrated based on the actual university data. Using this model, we consider the

changes of two parameters a) the size of student choice sets 60, 70, 80, 90, and b) the

standard deviation of the random component of student utility σ = 0.75, 1, 1.25, 1.5. We

again report the performance of the PMP, DA, and DA(m) mechanisms relative to the RSD

benchmark. In contrast to the main text, the reported simulation results are based on 50

random utility draws.

Figure D1 shows the comparative statics with respect to the size of student choice sets.

The �gure shows that the changes in the mean student utility compared to the RSD bench-

mark are small for third- and fourth-year students for all three mechanisms. For �rst- and

second-year students, the ranking among the four mechanisms remains the same for all the
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sizes of student choice sets. For �rst-year students, the change in the student mean utility

compared to the RSD becomes larger as more courses are included in student choice sets.

Such the change for the PMP mechanism increases from 5.05% for 60 courses to 7.73% for

90 courses.

The percentage changes in the standard deviation of student utility compared to the

RSD benchmark are also small for third- and fourth-year students for all three mechanisms.

For second-year students, the change remains approximately the same for all sizes of student

choice sets. For �rst-year students, the drop in the standard deviation also grows as more

courses are included in student choice sets. Such a drop in the standard deviation for the

PMP mechanism increases from −6.43% for 60 courses to −13.17% for 90 courses. The

relative ranking of the PMP and DA(m) mechanism reverses when student choice sets have

60 courses, but the magnitude of the reversal is small.

Figure D2 shows the comparative statics with respect to the standard deviation of the

random component σ. As for the comparative statics for the size of student choice sets,

the changes in the performance among four mechanisms are small for third- and fourth-year

students. For second-year students, the change in the mean student utility remains stable,

whereas the absolute change in the standard deviation of student utility slightly increases

with the value of the noise parameter σ. For �rst-year students, the absolute changes in

both the mean student utility and the standard deviation of student utility increase in σ.

Mean student utility for the PMP outcomes increases from 3.37% for σ = 0.75 to 9.25% for

σ = 1.5 and the standard deviation of student utility decreases from −0.7% for σ = 0.75

to −22.67% for σ = 1.5. We also observe a reversal in rankings for the standard deviation

of student utility for the PMP and DA(m) mechanisms for �rst- and second-year students

when σ = 0.75. However, the magnitude of the reversal is small.

Overall, the relative performance of the four mechanisms is relatively stable for a range

of parameters of the simple student utility model. For the PMP mechanism, we observe

an increase in the mean student utility and a decrease in the standard deviation of student

utility compared to the RSD benchmark when student choice sets are larger and when student

preferences over courses are more dispersed.
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Figure D1: The performance of Pseudo-Market with Priorities (PMP), Deferred Acceptance with single

tie-breaking (DA), and Deferred Acceptance with multiple tie-breaking DA(m) compared to the Random

Serial Dictatorship (RSD) with optimal set-asides when students choice set consists of 60, 70, 80, and 90

courses. The results are based on 50 runs with di�erent random utility draws for each parameter value.
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Figure D2: The performance of Pseudo-Market with Priorities (PMP), Deferred Acceptance with single

tie-breaking (DA), and Deferred Acceptance with multiple tie-breaking DA(m) compared to the Random

Serial Dictatorship (RSD) with optimal set-asides for σ = 0.75, 1, 1.25, 1.5. The results are based on 50 runs

with di�erent random utility draws for each parameter value.
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