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Abstract

We develop a general equilibrium model featuring heterogeneous households,
nominal rigidities, and limits to arbitrage due to segmentation in long-term
bond markets. Even when conventional monetary policy can stabilize aggregate
fluctuations, the presence of market segmentation implies excessively volatile
term premia in long-term yields, imperfect risk sharing, and consumption and
labor dispersion. The effectiveness of conventional policy alone is limited; to
improve welfare, the central bank must reduce the volatility of short-rate fluc-
tuations, but this implies a degree of macroeconomic volatility. However, when
the central bank has access to balance sheet tools, we derive a separation prin-
ciple for optimal policy: conventional policy stabilizes the output gap while
unconventional policy stabilizes risk premia. Only when the short rate is con-
strained should balance sheet policy be used for macroeconomic stabilization,
but this comes at the cost of imperfect financial stabilization.
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1 Introduction

Central banks responded aggressively to worsening financial conditions and growing
recessionary pressure during the global financial crisis of 2007-8. In addition to steep
cuts in policy rates, central banks undertook various unconventional policy actions;
the most salient of these were the quantitative easing (QE) programs carried out by
the Federal Reserve. The Fed continued to utilize QE programs during the onset of
COVID-19, and further began implementing quantitative tightening (QT) in response
to growing inflationary pressure starting in 2022.

The purpose of this paper is to study the welfare consequences of unconventional
monetary policy, and how the design of balance sheet policies interacts with the
conduct of more conventional interest rate policies. We develop a tractable general
equilibrium model with market segmentation, nominal frictions, and household het-
erogeneity. We start with a conventional New Keynesian model, where firms produce
using differentiated labor but face nominal rigidities when setting prices. However,
we depart from the representative household assumption: households in our model
have differentiated access to bond markets of different maturities.

We explicitly model bond markets and the determination of the entire term struc-
ture; in particular, we embed in our dynamic general equilibrium model a segmented
bond market. Households borrow through differentiated bond funds; these “preferred
habitat” or “clientele investors” (pension funds, mutual funds) introduce a degree of
market segmentation. However, specialized bond arbitrageurs (hedge funds, fixed in-
come broker-dealers) re-integrate markets; but when arbitrageur risk-bearing capacity
is imperfect, this integration is only partial.

Our setup introduces the possibility of imperfect risk-sharing, consumption dis-
persion, and labor dispersion across households. Household consumption and savings
decisions now take place across the entire term structure of bond returns. If bond
arbitrageurs have perfect risk-bearing capacity, this friction is immaterial in equilib-
rium; but whenever risk-bearing capacity is imperfect, borrowing rates differ across
differentiated households, and therefore optimal decisions do as well.

Bond market frictions have important implications for how monetary policy trans-
mits to households and the aggregate economy. First, consider the key mechanisms
of conventional monetary policy. Changes in the policy (short-term) interest rate
are transmitted to households only via segmented bond markets. In particular, the
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interactions of preferred habitat funds and bond arbitrageurs imply portfolio rebal-
ancing; the risk exposure of arbitrageurs therefore changes in response to short rate
movements. With imperfect risk-bearing capacity, this implies fluctuations in term
premia. Thus, a change in the policy rate is not transmitted one-for-one to house-
holds; moreover, the transmission differs across the term structure and therefore
across differentiated households.

Next, consider unconventional (QE or QT) policies. Central bank asset purchases
and sales directly induce portfolio rebalancing amongst bond market investors. Once
again, when risk-bearing capacity of bond markets is imperfect, such rebalancing
implies changes in term premia, even when the policy rate is unchanged. Because
households borrow at rates across the term structure, these policies also affect house-
hold consumption decisions.

From the perspective of an “aggregate Euler equation” channel of monetary policy,
our model thus implies that conventional and unconventional policies are somewhat
substitutable: either policy can be used to target borrowing rates faced by households.
In fact, we show that to a first order, the aggregate dynamics of output and inflation
in our model are the same as a model in which a representative household borrows
at a weighted average of bond returns across the term structure. This implies that if
the central bank loss function only depends on the volatility of output and inflation,
both conventional and unconventional policies can achieve identical outcomes. In
particular, if “divine coincidence” holds, then either policy tool can achieve first-best.

However, we show that such a policy loss function is not optimal from a social
welfare perspective. Both policies lead to variation in term premia, and excess fluc-
tuations in term premia implies excess dispersion in borrowing rates. Fluctuations
across the term structure imply differentiated consumption, savings, and labor supply
decisions across households. This dispersion results in utility losses relative to the
first-best because of imperfect risk-sharing and efficiency losses due to differentiated
labor markets. We show that neither tool alone can achieve first-best.

We therefore derive the optimal mix of policy rules when the central bank is max-
imizing social welfare. When short-rate and balance policy tools are unconstrained,
we derive an optimal separation result: conventional policy targets macroeconomic
stability (inflation and output gap volatility), while unconventional policy targets fi-
nancial stability (excess fluctuations in term premia). When divine coincidence holds,
this policy achieves first-best.
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However, when policy constraints bind, policy must balance tradeoffs. First, if the
central bank faces balance sheet constraints (which we model as deadweight holding
cost losses), we show that optimal policy implies that the short rate must be less
reactive to aggregate shocks in order to minimize financial disruptions. However,
this necessarily comes at the cost of increased macroeconomic instability. Second, if
the central bank faces constraints on short-rate policy (which we model formally as
deadweight costs of short rate changes), then QE must be used to offset macroeco-
nomic shocks. However, this comes at the cost of financial stability: term premia
are more volatile than in the first-best, and thus consumption and labor dispersion
causes social welfare losses.

Thus, policy constraints imply tradeoffs between macroeconomic and financial sta-
bilization. Our findings apply when the central bank pursues simple time-consistent
policy rules (where policy tools are functions of the natural state variables only). We
also derive optimal policy results when the central bank has full commitment and
can choose policy tools freely as a function of current and past realizations of the
economy. Such policies are welfare-improving over simple policy rules. For instance,
when the central bank can only utilize conventional policy, optimal policy under full
commitment implies interest rate changes are smoothed out relative to the optimal
time-consistent short rate rule. By smoothing out interest rate changes, short rate
volatility is lowered and hence in equilibrium term premia are smaller. Relative to
simple time-consistent policy rules, the entire expected path of short rates can be uti-
lized to keep output gaps small. However, such policies still cannot achieve first-best
(unless both short rate and balance sheet policies can be utilized without frictions).

A general message of our model is that implementation matters for welfare. While
we present a tractable, stylized model where term premia fluctuations lead to welfare
losses through household consumption and labor dispersion, the lessons of our model
are transferable to richer models; for instance, if firms face segmented access to bond
and asset markets, excessive fluctuations in risk premia across the term structure and
asset classes would have similar implications. Our focus is a tractable model which
can deliver clear analytical results.

Our paper builds on the seminal preferred habitat model of Vayanos and Vila
(2021), which formalizes the original concept as described in Modigliani and Sutch
(1966).1 The main insight of preferred habitat models is that the interaction of clien-

1Other important theoretical contributions to preferred habitat models are Greenwood and
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tele investors implies important departures from the expectations hypothesis in the
determination of the term structure of interest rates. More concretely, demand and
supply shocks in these markets induce changing risk exposure on the part of marginal
bond investors; when risk-bearing capacity is imperfect, this implies fluctuations in
risk premia.2 These models are typically partial equilibrium models. One exception
is Ray et al. (2024), which uses a quantitative version of the model in this paper to
study the positive implications of QE policies. That paper considers a richer risk
factor structure and a wider set of assets (both riskless and risky bonds), but house-
holds are representative; hence, the normative implications explored in this paper are
absent.

Our work more generally contributes to a large literature studying the effects of
QE in general equilibrium models. These models feature various forms of financial
frictions such as bank balance sheet constraints which break the textbook “QE neu-
trality” results (e.g. see Gertler and Karadi 2011, Gertler and Karadi 2013, Cúrdia
and Woodford 2011, Chen et al. 2012, Sims and Wu 2020, Karadi and Nakov 2020,
Iovino and Sergeyev 2023, Carlstrom et al. 2017, Ippolito et al. 2018.) Our paper
also relates to models of market segmentation which study various forms of macroe-
conomic stabilization or macro-prudential policy (e.g. see Andrés et al. 2004, Cui and
Sterk 2021, Auclert 2019, Angeletos et al. 2023, Debortoli and Galí 2017)

Finally, our model overlaps with similar work in an international setting. Most
closely related to our optimal policy results is Itskhoki and Mukhin (2023), who study
the optimal mix of conventional policy and FX interventions in an open economy
setting. Theoretically more closely linked to our framework, Gourinchas et al. (2022)
and Greenwood et al. (2023) also study the determination of bond yields and exchange
rates in a similar preferred habitat model, though these papers do not study general
equilibrium effects.

Our paper is structured as follows. Section 2 describes the private agents in the
model, characterizes general equilibrium, and derives the social loss function which the
policymaker seeks to minimize. Section 3 studies the aggregate dynamics of the model

Vayanos (2014), Greenwood et al. (2016), King (2019b), King (2019a), Kekre et al. (2024).
2Empirically, there is strong evidence of the existence of demand and supply “preferred habitat”

frictions considered in this paper, and that these frictions are important for understanding the
transmission of large-scale asset purchases (e.g. see Krishnamurthy and Vissing-Jorgensen 2011,
D’Amico and King 2013, Li and Wei 2013, Krishnamurthy and Vissing-Jorgensen 2012, Cahill et al.
2013, King 2019b Fieldhouse et al. 2018, Di Maggio et al. 2020, Debortoli et al. 2020).
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under ad-hoc policy rules. Section 4 studies optimal policy for simple time-consistent
rules, while Section 5 extends these results to the case of full commitment. Section 6
discusses additional extensions and tests of our model, and Section 7 concludes.

2 Model

Time is continuous and denoted by t ∈ (0,∞). The model is made up of the follow-
ing set of agents. A household (HH) sector is formally comprised of differentiated
members making labor and consumption decisions. Each household member sup-
plies differentiated labor to productive firms. Intermediate goods are produced by
monopolistically competitive firms using labor; these firms set prices but face nom-
inal rigidities in the form of Rotemberg pricing frictions. Differentiated goods are
aggregated by a perfectly competitive final goods retail sector.

Additionally, in our model household members cannot trade a complete set of
financial securities. Instead, each household member trades with a maturity-specific
bond mutual fund. Bonds of maturity τ ∈ (0, T ) are traded in financial markets
populated by preferred habitat mutual funds and specialized bond arbitrageurs. We
assume that households cannot trade bonds directly, but instead make borrowing and
lending decisions through preferred habitat funds. These funds trade bonds of specific
maturities, both on behalf of their household clients as well as for their proprietary
trading desk. Arbitrageurs trade bonds across the entire term structure, but have
limited risk-bearing capacity: formally, these agents solve a myopic mean-variance
portfolio problem. These agents are owned by the household sector, but due to fi-
nancial frictions do not price bonds using the household stochastic discount factor
(SDF). We represent the arbitrageur portfolio problem as a function of risk aversion
(formally, preferences of the arbitrageurs); however, we treat this risk aversion param-
eter as a proxy for risk-bearing capacity of financial intermediaries. This is a friction
which hinders arbitrageurs’ ability to trade assets perfectly on behalf of households
as a whole.

The monetary authority sets the short term nominal interest rate, and conducts
balance sheet policies. A fiscal authority provides optimal production and labor
subsidies but is otherwise passive and balances the budget period by period.

We study versions of the model where the monetary authority chooses policy
according to an ad-hoc Taylor rule, and compare this to policy rules which are chosen
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to maximize social welfare (possibly subject to implementation frictions). We focus
on a linearized equilibrium and second-order welfare approximations. Our linear-
quadratic approximation is around a deterministic first-best steady state, where our
approximation method still allows for non-zero bond term premia which affect first-
order macroeconomic dynamics.

2.1 Setup

Before describing the set of investors, we start with bond prices as a function of
arbitrary sets of risk factors. The price of a τ bond (which pays one dollar at period
t+ τ) is P (τ)

t , and the return is given by:

dP
(τ)
t

P (τ)
= µ

(τ)
t dt+ σ

(τ)
t dBt , (1)

where µ(τ)
t represents the mean short-horizon return of a τ bond, and σ

(τ)
t represents

how shocks to risk factors (the vector of Brownian terms Bt) lead to fluctuations
in returns. These objects are endogenous and determined in equilibrium (which we
describe in detail below); however, all agents take these objects as given.

Bond prices and yields are related in the usual way: y
(τ)
t = − logP

(τ)
t /τ . In

equilibrium, taking the limit as maturity τ → 0, we recover the nominal risk-free
interest rate: y(τ)t → it. The short rate is the conventional policy tool and is controlled
by the central bank.

When convenient, we work with an arbitrary set of risk factors. However, we also
separately consider two baseline models. In the first, we assume one aggregate risk
factor: technology follows a (log) drift-diffusion OrnsteinUhlenbeck process:

dzt = −κzzt dt+ σz dBz,t . (2)

In the second, we consider a version of the model where the only source of risk comes
from monetary policy shocks. We consider Taylor-type of rule policies so that the
(linearized) dynamics of the policy rate are given by

dit = −κi(it − ϕππt − ϕxxt) dt+ σi dBi,t , (3)

where πt and xt are inflation and the output gap (in terms of log-deviations from
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steady state, discussed below). The coefficients ϕπ and ϕx are standard Taylor rule
coefficients, which govern how the central bank changes the policy rate in response to
macroeconomic fluctuations. The term κi represents the degree of inertia in the policy
rule; as κi → ∞, we recover a Taylor rule which has no persistence. The Brownian
term σi dBi,t represents stochastic shocks to the monetary policy rule, which we take
as given.

The first model will be our baseline for studying optimal policy; we use the second
to derive analytical results regarding macroeconomic dynamics when taking as given
a simple policy rule.

2.2 Intermediate Firms

A continuum of intermediate goods producers index by j ∈ [0, 1] produce differenti-
ated goods Yt(j) and set prices Pt(j). Final goods Yt are produced by a competitive
retail sector, which aggregates according to Yt ≡

[∫ 1

0
Yt(j)

ϵ−1
ϵ dj

] ϵ
ϵ−1 , where the elas-

ticity of substitution between goods is ϵ. This implies the follow demand and price
index for differentiated goods

Yt(j) =

(
Pt(j)

Pt

)−ϵ

Yt, Pt =

[∫ 1

0

Pt(j)
1−ϵ dj

] 1
1−ϵ

. (4)

Firms produce according to the production technology Yt(j) = ZtLt(j). Aggregate
technology Zt ≡ ezt evolves according to (2). The index of labor input Lt(j) is given
by

Lt(j) ≡
[∫

h∈H
Lt(j, h)

ϵw−1
ϵw dh

] ϵw
ϵw−1

, (5)

where Lt(j, h) is firm j’s demand for h-type labor supplied by the household sector
H (discussed below), and ϵw is the elasticity of substitution between labor varieties.
Firms hire type-h labor at the nominal wage Wt(h) (which is taken as given by firms).
Cost minimization implies the following demand and wage index for labor varieties

Lt(j, h) =

(
Wt(h)

Wt

)−ϵw

Lt(j), Wt =

[∫
h∈H

Wt(h)
1−ϵw dh

] 1
1−ϵw

. (6)

When choosing prices Pt(j), intermediate goods producers face the following con-
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vex costs of adjustment

Θ(πt(j)) =
θ

2
πt(j)

2PtYt, (7)

where πt(j) is the inflation rate of firm j: dP t (j) = Pt(j)πt(j) dt.
Nominal profits of firm j are therefore given by

Ft(Pt(j), Yt(j), πt(j)) = (1 + τ y)Pt(j)Yt(j)−WtLt(j)−Θ(πt(j))− Tt, (8)

where τ y is a production subsidy and Tt are nominal lump-sum taxes set by the fiscal
authority (described below). Combining with equations (4), (6), and (7) and firm
production, real profits are given by

Ft(j)

Pt

= Yt

[
(1 + τ y)

(
Pt(j)

Pt

)1−ϵ

− Wt

Zt

(
Pt(j)

Pt

)−ϵ

− θ

2
πt(j)

2

]
− Tt

Pt

, (9)

where the real wage index Wt ≡ Wt/Pt. The firm problem at time t = 0 is therefore

U0 ≡ max
{πt(j)}∞t=0

E0

∫ ∞

0

e−ρtQH
t

Ft(j)

Pt

dt s.t. dP t (j) = Pt(j)πt(j) dt . (10)

Firms transfer profits to households, thus profits are discounted by e−ρtQH
t , the real

SDF of households (defined below).
Note that in a symmetric equilibrium (which is obtained when initial prices are

equalized P0(j) ≡ P0), we have that the aggregate dynamics of the price index dP t =

Ptπt dt are (locally) non-stochastic. Additionally, when the production subsidies are
self-financing (

∫ 1

0
τ yPt(j)Yt(j) dj = Tt), real profit transfers to households are given

by

Ft

Pt

≡
∫ 1

0

Ft(j)

Pt

dj = Yt

(
1− Wt

Zt

− θ

2
π2
t

)
. (11)

Note that the costs of price adjustments are deadweight loss.

2.3 Households

Households are made up of a “head of household” as well as a continuum of house-
hold members, denoted by h ≡ h(i, τ) ∈ H. There is a mass η(τ) of each τ group:

9



∫
i
h(i, τ) di = η(τ), where

∫ T

0
η(τ) dτ = 1. Within each τ group, each member is

identical. A household member h chooses consumption of the final good Ct(h) and
supplies differentiated labor Nt(h). We assume that household members set the nom-
inal wage Wt(h) frictionlessly, taking as given the demand for differentiated labor in
(6). When borrowing or saving, τ -type households face the τ -maturity bond return
in (1) (which they take as given).

Each household member faces the same per-period flow utility function

u (Ct(h), Nt(h)) =
Ct(h)

1−ς − 1

1− ς
− Nt(h)

1+φ

1 + φ
, (12)

where ς is the inverse intertemporal elasticity of substitution and φ is the inverse
Frisch labor elasticity. Households face a discount factor ρ, so the resulting value
function and budget constraint of an h household member at time t = 0 is given by:

V0(h) ≡ max
{Ct(h),Nt(h)}∞t=0

E0

∫ ∞

0

e−ρtu (Ct(h), Nt(h)) dt (13)

s.t. dAt (h) = [(1 + τw)Wt(h)Nt(h)− PtCt(h)] dt+ At(h)
dP

(τ)
t

P
(τ)
t

+ dF t (h), (14)

where At(h) is nominal wealth and dF t (h) are (flow) nominal transfers (from firms,
funds, arbitrageurs, the government, and the head of the household, defined below).
The term τw is a labor supply subsidy. In equilibrium, transfers follow some (endoge-
nous) process taken as given by household member h

dF t (h) = µF
t (h) dt+ σF

t (h) dBt .

Define real wealth at(h), Ito’s lemma along with the return process for bonds in (1)
implies

dat (h) =

[
(1 + τw)Wt(h)Nt(h)− Ct(h) + at(h)(µ

(τ)
t − πt) +

µF
t (h)

Pt

]
dt

+
[
at(h)σ

(τ)
t + σF

t (h)
]
dBt , (15)

where Wt(h) is the real wage of household member h (and note we have used the fact
that the price level Pt is locally non-stochastic).
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2.4 Preferred Habitat Mutual Funds and Arbitrageurs

In addition to the household members, bonds are traded by a continuum of “preferred
habitat” mutual funds (who specialize in bonds of specific maturities τ) as well as
a set of representative arbitrageurs (who buy and sell bonds across the entire term
structure).

A τ -maturity preferred habitat fund desires to trade bonds for proprietary reasons.
Their demand is exogenous and takes the same form as in Vayanos and Vila (2021)

Z
(τ)
t = −α(τ) logP (τ)

t − β
(τ)
t . (16)

This implies that habitat bond traders rebalance for two reasons: first, α(τ) > 0

implies that they are price-elastic. Second, β(τ)
t represents a potentially time-varying

demand shock which is independent of the demand from households. In the baseline
model, we abstract from demand risk. We consider separately the model where
stochastic demand risk is an aggregate risk factor.

Letting ω
(τ)
t represent the wealth of the τ -maturity habitat fund, their budget

constraint is given by

dω
(τ)
t =

[
ω
(τ)
t − Z

(τ)
t

]
it dt+ Z

(τ)
t

dP
(τ)
t

P
(τ)
t

. (17)

That is, τ -maturity bond funds fund their position (given by proprietary demand
(16)) in τ -maturity bonds using the short-term borrowing it. Any profits or losses of
τ -habitat funds are transferred to the household sector.

Unlike habitat funds, bond arbitrageurs choose holdings of short- and long-maturity
bonds. The representative arbitrageur has wealth ωt and solves the following mean-
variance problem:

maxEt dωt −
a

2
Vart dωt (18)

s.t. dωt = ωtit dt+

∫ T

0

X
(τ)
t

(
dP

(τ)
t

P
(τ)
t

− it dt

)
dτ . (19)

That is, they choose bond holdings X(τ)
t across all maturities τ . Arbitrageurs choose

to engage in carry trades across the term structure in order to optimally satisfy the
tradeoff between higher expected returns and the volatility on their balance sheet.
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This problem is governed by the risk aversion coefficient a. Like the habitat funds, any
profits or losses are transferred to the household sector. The risk aversion parameter
a is a proxy for capital constraints or Value-at-Risk constraints. More generally, the
arbitrageur risk aversion coefficient is a stand-in for the financial frictions which imply
that bond returns are not determined as in a model with a representative household
with perfect access to financial securities. We return to this point in the discussion
of our linear-quadratic approximation method.

2.5 Government

The fiscal authority sets optimal production and labor subsidies τ y and τw such that
the steady state price and wage markups are zero: τ y = (ϵ − 1)−1, τw = (ϵw − 1)−1.
These are self-financed through lump sum taxes on firms and households, respectively.
The central bank sets the nominal interest rate it, and the fiscal authority pays
this interest it on short-term bonds (reserves). Besides the production and labor
subsidies, the fiscal authority is passive: it levies lump-sum taxes or transfers PtTt on
households in order to balance the budget each period, so that PtTt = −Btit where
Bt is the aggregate demand for short-term bonds (reserves). The central bank may
also conduct balance sheet operations by taking non-zero positions in bonds S(τ)

t .
Any proceeds from the central bank bond holdings are renumerated lump-sum to the
households.

In our baseline model, we assume that the central bank can utilize balance sheet
tools and the short rate without any constraints. However, we also consider cases
where bond holdings are subject to real deadweight holding costs (measured in terms
of output) which take the form:

YtΨ
S
t ≡ Yt

∫ T

0

ψ(τ)

2

(
S
(τ)
t

)2
dτ . (20)

Thus, whenever ψ(τ) > 0, non-zero central bank holdings will imply deadweight losses.
Additionally, the central bank may also face real convex costs of adjustment when
setting the short-term interest rate:

YtΨ
i
t ≡ Yt

ψi

2
(it − īt)

2
, (21)
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where īt represents a potentially time-varying (exogenous) policy target. We inter-
pret (21) as capturing in reduced-form constraints such as the effective lower bound;
however, to maintain our linear-quadratic approximations, we assume a symmetric
loss function. Thus, whenever ψi > 0, changes in the short-term interest rate away
from īt will imply deadweight losses.

The government levies taxes

YtΨt ≡ YtΨ
S
t + YtΨ

i
t, (22)

which are paid lump-sum by households. These taxes fund the costs associated with
policy frictions arising from holding costs or short-rate targeting.

2.6 Equilibrium

We first discuss the intuition behind the equilibrium forces in the model. From the
arbitrageurs’ problem, mean-variance preferences imply that bond holdings increase
with expected returns and decrease with volatility of bonds. In other words, these
arbitrageurs engage in more aggressive bond carry trades when expected returns
are higher (all else equal). But preferred habitat demand also reacts to bond price
fluctuations. When prices increase (yields decrease), bond habitat funds reduce their
holdings of bonds (all else equal). Thus, in equilibrium, any shocks which affect
the term structure of interest rates will lead to equilibrium re-balancing in the bond
market.

Turning to the household sector, households make otherwise standard consump-
tion, savings, and labor decisions. But the borrowing rates faced by household mem-
bers potentially differ whenever expected returns move. Thus, in addition to the
forces described above, in equilibrium any shocks which affect the term structure of
interest rates will potentially lead to differentiated consumption and labor choices
across households.

Therefore, sources of inefficiency arise from the deadweight losses associated with
changes in prices (due to nominal rigidities); production inefficiencies from dispersion
in labor supply (due to labor market frictions); and imperfect risk-sharing from dis-
persion in consumption and savings decisions (due to the bond market segmentation).
These frictions show up in aggregate dynamics as well: nominal rigidities will have ef-
fects on the aggregate price-setting behavior of firms and thus on inflation. Moreover,
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aggregate household consumption and labor supply will depend on the entire term
structure of interest rates as well. Finally, bond prices will depend not only on the
portfolio rebalancing channels discussed above, but also on the expected movements
of risk factors and the short-term interest rate, which through central bank decisions
will depend on aggregate dynamics. When choosing policy, the central bank will
attempt to undo any harmful effects of these frictions.

2.7 Aggregation and Market Clearing

In a symmetric equilibrium, all firms make the same decisions and so Yt(j) = Yt, Pt(j) =

Pt, πt(j) = πt, Lt(j, h) = Lt(h). Each τ -type of household members h(i, τ) = h(i′, τ)

are identical. Thus, Ct(i, τ) ≡ Ct(τ), Nt(i, τ) ≡ Nt(τ), and At(i, τ) ≡ At(τ). Aggre-
gate household consumption is therefore

Ct =

∫
h∈H

Ct(i, τ) dh =

∫ T

0

η(τ)Ct(τ) dτ . (23)

Labor market clearing implies Lt(h) = Nt(h). Additionally, wages are equalized
across h(i, τ) = h(i′, τ) household members: Wt(i, τ). Then aggregate demand for
the labor index (defined in (6)) is given by

Lt =

[∫ T

0

η(τ)Nt(τ)
ϵw−1
ϵw dτ

] ϵw
ϵw−1

. (24)

Thus, aggregate labor supply Nt ≡
∫
h∈HNt(h) dh =

∫ T

0
η(τ)Nt(τ) dτ differs from

aggregate labor index demand Lt whenever Nt(τ) ̸= Nt(τ
′).

Using (23) and (24), market clearing in goods and production therefore implies

Yt = ZtLt, (25)

Ct = Yt

(
1− θ

2
π2
t −Ψt

)
, (26)

where aggregate consumption differs from aggregate output due to deadweight loss
from price changes when θ > 0 (as well as losses from policy frictions when ψ(τ) > 0

or ψi > 0 in equations (20) or (21)).

14



The aggregate wealth of the household sector is given by

At =

∫
h∈H

At(i, τ) dh =

∫ T

0

η(τ)At(τ) dτ . (27)

Bond market clearing implies

X
(τ)
t + Z

(τ)
t + η(τ)At(τ) + S

(τ)
t = 0 (28)

for all maturities τ > 0 (and the passive fiscal authority ensures that the short-term
bond market clears).

2.7.1 Head-of-Household Transfers

We assume a “head of household” sets inter-member transfers in order to maintain
some degree of wealth equality. We consider two such policies. The first, which we
make purely for tractability, are such that in equilibrium, wealth is equalized period-
by-period: across τ household groups, At(τ) ≡ At.3 We make this assumption to
place a clear focus on the role market segmentation plays in generating consumption
dispersion and imperfect risk-sharing across households. In ongoing work, we relax
this assumption and instead assume that the head-of-household levies a “wealth tax”
which equalizes wealth across household members in steady state (but not period-
by-period). This induces more complicated dynamics in the demand for bonds of
different maturities, but does not change our main optimal policy conclusions.

2.8 Optimality Conditions

The arbitrageur optimality conditions are given by

µ
(τ)
t − it = σ

(τ)
t Λt, where Λ⊤

t = a

∫ T

0

X
(τ)
t σ

(τ)
t dτ . (29)

Hence, arbitrageurs ensure that no risk-free arbitrage opportunities exist. Equation
(29) shows that the expected excess return of any τ -maturity bond is a function of
bond-specific risk loadings σ

(τ)
t (the diffusion terms from (1)) and a global set of

3However, consumption is not equalized off-equilibrium because the transfers are conditioned on
the maturity type τ of household members. Transfers are not conditional on the specific actions of
household member h(i, τ).
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risk prices Λt. The market price of risk depends on arbitrageur risk aversion a as
well as equilibrium holdings X(τ)

t (which in equilibrium will be determined by market
clearing).

The intratemporal optimality conditions for τ -type household members (along
with the demand for differentiated labor and the optimal labor subsidy) imply that
(log) consumption and labor supply ct(τ), nt(τ) are related to the differentiated (log)
real wage wt(τ) according to

wt(τ) = ςct(τ) + ϕnt(τ). (30)

We can re-write this in terms of aggregate (log) wage and labor indices wt, ℓt

wt = ςct(τ) + ϕnt(τ) +
1

ϵw
(nt(τ)− ℓt) . (31)

The final term arises due to the existence of differentiated labor (which disappears as
ϵw → ∞). However, note that even with frictionless labor markets, labor decisions
still may differ across households.

Combined with bond price dynamics and household (log-linearized) intertemporal
optimality conditions, we find that the (log) consumption ct(τ) of τ -type households
satisfies a standard Euler equation

dct(τ) = ς−1
(
µ
(τ)
t − πt − ρ

)
dt , (32)

where the only departure from a textbook model is that a τ -type household member
makes consumption and savings decisions as a function of the τ -bond return µ

(τ)
t ,

rather than the short-term policy rate it.
Firm (log-linearized) optimality conditions imply that aggregate inflation depends

on the real marginal costs faced by firms. In aggregate, firm marginal costs are a
function of (log) technology zt and (log) wage index wt:

dπt = (ρπt − δwwt) dt , (33)

where δw is a composite parameter which measures the aggregate degree of price
rigidity.
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2.9 Social Welfare

We approximate the model around the first-best allocation, where we do so around
a “riskless” limiting case: we assume that aggregate risk converges to zero so that
σ

(τ)
t → 0, but that arbitrageur risk aversion a → ∞, such that the product of risk

aversion and risk a1/2 · σ(τ)
t ≡ σ̃

(τ)
t remains non-zero and bounded. This assump-

tion captures explicitly that arbitrageur risk aversion a is a measure of imperfect
arbitrage. Our approximation method allows for tractable first- and second-order
approximations of the model, while still allowing for time-variation in risk premia.

The following Proposition derives the first-best allocation in the riskless limiting
case.

Proposition 1 (First-best (natural) allocation). In the limiting case where σ
(τ)
t → 0,

the first-best (natural) allocation is obtained when θ = 0 and a = 0 ⇐⇒ σ̃
(τ)
t = 0.

We denote the first-best as the “natural” equilibrium, in which firm nominal rigidi-
ties disappear (θ = 0) and arbitrage is perfect (a = 0). We denote aggregate output
in the natural equilibrium by Y n

t , and define the output gap Xt ≡ Yt

Y n
t

with respect to
the natural benchmark.

Aggregating (32) across households, the dynamics of the (log) output gap xt are
governed by a modified aggregate Euler equation:

dxt = ς−1 (µ̃t − πt − rnt ) dt . (34)

The term rnt ≡ −κzzt is the “natural” rate, which is the real borrowing rate in the
first-best allocation from Prop. 1. The “effective borrowing rate” µ̃t is given by

µ̃t =

∫ T

0

η(τ)µ
(τ)
t dτ , (35)

which is the average borrowing rate faced by the household, weighted by the household
member weights η(τ).

Re-writing the firm optimality condition (33) in terms of output gaps gives a New
Keynesian Phillips curve:

dπt = (ρπt − δxt) dt , (36)

where δ measures the aggregate degree of price rigidity.
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The dynamics of the output gap xt and inflation πt in (34) and (36) imply that,
to a first-order, our model is essentially the same as Ray et al. (2024). However, the
welfare consequences differ due to the inefficiencies described above. A second-order
expansion of social welfare relative to the first-best allocation gives the per-period
social loss

Lt ≡ (ς + φ)x2t + θπ2
t (37)

+
ς

φ

(
φ+ ς

[
φϵw

1 + φϵw

]2)
Varτ c(τ)t + ϵw Varτ w(τ)

t (38)

+

∫ T

0

ψ(τ)
(
S
(τ)
t

)2
dτ + ψi (it − īt)

2
. (39)

The first two terms in line (37) capture the welfare losses associated with the nomi-
nal rigidities in the model; these terms arise in representative agent New Keynesian
(RANK) models. Compared to a standard RANK model, line (38) shows that social
welfare loss also depends on terms

Varτ c(τ)t ≡
∫ T

0

η(τ)
(
c
(τ)
t

)2
dτ −

[∫ T

0

η(τ)c
(τ)
t dτ

]2
,

Varτ w(τ)
t ≡

∫ T

0

η(τ)
(
w

(τ)
t

)2
dτ −

[∫ T

0

η(τ)w
(τ)
t dτ

]2
.

Thus, increased consumption dispersion across households implies welfare losses, due
to imperfect risk-sharing. Additionally, wage dispersion also induces welfare losses,
due to production labor market inefficiencies.

The final terms in line (39) represent losses associated with the central bank
balance sheet and short rate policies from equations (20) and (21).

3 Aggregate Dynamics

Before studying the welfare consequences of the model, we explore the first-order
reactions to monetary policy. To do so, we consider versions of the model where
the central bank follows ad-hoc policy rules. In particular, we focus on a version of
the model with a simple Taylor rule (subject to shocks) as well as zero-probability
QE/QT policies. In the next section, we utilize these insights to explore the optimal
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design of monetary policy rules.
Intuitively, what does general equilibrium look like in this model? From the

perspective of households, the key factor is how sensitive their borrowing rates are
to the short rate (and balance sheet policies). The model reduces to a benchmark
New Keynesian model when these rates move one-for-one, but in general µ(τ)

t ̸= it.
Suppose that long-term borrowing rates are highly responsive to the policy rate.
Then household borrowing is also highly sensitive to the policy rate, and therefore
the growth rate of consumption will also react strongly to the policy rate. On the
other hand, when long-term rates are insensitive to the policy rate, the pass-through
of changes in the policy rate to households is weakened. Through the borrowing
decisions of the household, the growth rate of consumption is less responsive to the
policy rate.

However, the sensitivity of the effective borrowing rate to the policy rate is an
equilibrium object, which also depends on financial markets. Bond prices will adjust
in order to achieve equilibrium in bond markets, such that arbitrageurs’ portfolio
allocation satisfies their mean-variance tradeoff while also clearing the market given
the demand from preferred habitat investors. In this model, arbitrage is imperfect
and the term structure will not be characterized by the expectations hypothesis ex-
cept under special circumstances. Therefore, it is the risk-adjusted dynamics of the
macroeconomy which determine bond prices in financial markets, rather than the
actual dynamics of the short rate only.

In general, the term structure will be determined by complicated interactions be-
tween the different classes of investors in bond markets (arbitrageurs, habitat funds,
and households). Because differentiated households also make consumption and sav-
ings decisions as a function of different borrowing rates, the general equilibrium dy-
namics of the macroeconomy will also depend on these interactions. However, two
limiting cases can be analyzed immediately. First, if arbitrageurs are risk-neutral
(a = 0, so they only care about expected returns), then equilibrium can only be
achieved if Et

[
dP

(τ)
t

P
(τ)
t

]
= it dt. And if expected instantaneous returns of all bonds

are equalized at the short rate, then risk-neutral arbitrageurs are indifferent between
any bond allocation. In this case, they will absorb any demand shifts from preferred
habitat or household investors without any equilibrium price changes. In other words,
idiosyncratic demand shifts will not affect the term structure of interest rates.

In the other extreme, if arbitrageurs abandon the bond market (allocating the
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entirety of their wealth to the risk-free short rate), then equilibrium is only satisfied
if prices satisfy logP

(τ)
t = β

(τ)
t /α(τ) (assuming no balance sheet actions of the central

bank, so market clearing implies 0 = X
(τ)
t = −Z(τ)

t ). This would imply that bonds
of very close maturity could have very different prices (and would potentially evolve
unrelated to the short rate). However, this extreme segmentation does not occur in
equilibrium because arbitrageurs will optimally take non-zero positions in long-term
bonds. The impact of changes in preferred habitat demand (if any) will depend on
how arbitrageurs adjust their portfolio allocations. In turn, this will depend on the
equilibrium dynamics of the short rate and other macroeconomics variables.

General equilibrium is obtained when these two forces balance. Thus, character-
izing equilibrium involves two key steps: first, understanding the differences between
the actual and risk-adjusted dynamics of the economy; and second, linking house-
hold savings and consumption choices with the bond prices determined in imperfect
financial markets.

The central bank chooses the (nominal) short rate it (in terms of deviations from
the steady state value) through the following Taylor rule with persistence:

dit = −κi(it − ϕππt − ϕxxt) dt+ σi dBi,t , (40)

where Bi,t is a standard Brownian motion and σi governs the size of the shocks
(relative to arbitrageur risk aversion). The parameters ϕπ, ϕx govern the feedback
rule for inflation and output to changes in the policy rate. Inertia in the policy rule
is determined by κi; if κi → ∞, (40) simplifies to a Taylor rule with no gradual
adjustments in the policy rate. Note that it is measured in terms of deviations from
the long-run target, which delivers a steady state with zero inflation and zero output
gap.

We assume that the central bank also conducts ad-hoc QE/QT policies according
to

S
(τ)
t = θQE(τ)St, dSt = −κSSt dt . (41)

A QE (QT) policy is a zero-probability purchase (sale) of τ bonds. We assume that
these asset purchases follow a simple factor structure according to St, which follow
the shock reverts back towards zero. The function θQE(τ) translates movements in St

into changes in τ -bond holdings of the central bank. For simplicity, we assume that
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θQE(τ) > 0 so that the central bank purchases or sells bonds across all maturities in
the same direction.

We first characterize equilibrium for a general set of risk factors and dynamics, and
then apply these results to specific versions of our model. Collect the state variables,
jump variables, and Brownian terms into vectors yt, xt and Bt, respectively (all in
terms of deviations from steady state). In order to define this set of state variables,
we assume that the demand shifter of preferred habitat demand in (16) follows a
factor structure

βt(τ) =
K∑
k=1

θk(τ)yt,k, (42)

where the functions θk(τ) govern how demand reacts to movements in a state variable
yt,k.

The following Lemma describes the aggregate dynamics of the model, taking as
given the effective borrowing rate. All proofs are in Appendix A.

Lemma 1 (Aggregate dynamics). Suppose the effective borrowing rate (in terms of
deviations from steady state) is given by

µ̃t = Â⊤yt. (43)

Then the linear rational expectations equilibrium is given by

dyt = −Γyt dt+ σ dBt , xt = Ωyt, (44)

where the matrices Γ,Ω are a function of the eigendecomposition of the linearized
dynamics of the model (and therefore functions of Â).

If Â = ei, the vector which “selects” the policy rate e⊤i yt = it, then the effec-
tive borrowing rate responds one-for-one with the policy rate it and the aggregate
dynamics of the model reduce to a standard New Keynesian model.

Next, we turn to characterizing the behavior of asset prices. We focus on a solution
to the model in which (log) bond prices are affine functions of the state variables,
given by (endogenous) coefficient functions:

− logP
(τ)
t = A(τ)⊤yt + C(τ). (45)
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Lemma 2 (Asset prices). Suppose that the state variables yt evolve according to
equation (44). Then the affine coefficients in equation (45) are given by

A(τ) =
[
I− e−Mτ

]
M−1ei (46)

where ei is a vector such that e⊤i yt = it. The matrix M solves the fixed point problem:

M = Γ⊤ −
∫ T

0

[−α(τ)A(τ) +Θ(τ)]A(τ)⊤ dτ Σ̃, (47)

where Σ̃ ≡ a · σσ⊤ and Θ(τ) stack the habitat and central bank demand functions
θk(τ), θQE(τ) into vectors.

The matrix M can be thought of as the risk-adjusted dynamics of the state. In
the first-best, arbitrageurs are perfectly risk-neutral (a = 0 =⇒ Σ̃ = 0), so we have
M = Γ⊤. However, when Σ̃ ̸= 0, M appears on both sides of equation (47) through
the affine coefficients A(τ).

With the results in Lemmas 1 and 2, we can characterize the equilibrium of the
model.

Proposition 2 (Existence and uniqueness). An affine equilibrium is one in which
the state and jump variables evolve according to equations (44), and asset prices are
determined by the solution to the expressions (46) and (47). In this case, the effective
borrowing rate is given by equation (43), where Â solves the fixed point problem

Â = ei +
(
Γ⊤ −M

) ∫ T

0

η(τ)A(τ) dτ . (48)

In a neighborhood of risk-neutrality (a ≈ 0), the equilibrium exists and is (locally)
unique.

Note that the dynamics matrix of the state Γ depends on the effective borrowing
rate coefficients Â, which itself is a function of the risk-adjusted dynamics matrix M.
Thus, equilibrium is determined as a fixed point that produces asset price dynamics
consistent with equilibrium dynamics of the macroeconomy and vice versa. In general,
an affine equilibrium of this type may not exist, or there may be multiple solutions to
this fixed point problem. However, when a = 0, the model reduces to a standard New
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Keynesian model. The result in Proposition 2 shows that this equilibrium persists
and is locally unique as we depart from risk neutrality.

3.1 Conventional Policy

For now, we assume that monetary policy is the only source of uncertainty, so that the
natural rate rnt is fixed at its steady sate value. In equilibrium, bond prices therefore
only respond to changes in the short rate. In terms of log-deviations from steady
state, we thus have

− logP
(τ)
t = Ai(τ)it =⇒ µ̃t = Âiit.

The follow Proposition characterizes the responses of inflation and the output gap to
changes in the policy rate in equilibrium.

Proposition 3 (Conventional monetary policy responses). Determinacy is satisfied
if and only if

Âi >
δ

δϕπ + ρϕx

. (49)

When this condition holds, Âi is the unique solution to the following fixed point prob-
lems:

Âi(γ) ≡ 1−
(
1− γ

m(γ)

)(
1− e−m(γ)τ

)
,

m(γ) = γ + aσ2
i

∫ T

0

α(τ)

(
1− e−m(γ)τ

m(γ)

)2

dτ ,

Âi(γ) =
(γ − κi)(γ

2 + γρ− ς−1δ)

ς−1κi (δϕπ + ρϕx + γϕx)
,

and in equilibrium Âi ∈ (0, 1), γ > κi, and dit = −γit dt + σi dBi,t. Inflation and
output gap dynamics are given by πt = ωπit and xt = ωxit, where

ωπ = − δ(γ − κi)

κi (δϕπ + ρϕx + γϕx)
, ωx = − (γ + ρ)(γ − κi)

κi (δϕπ + ρϕx + γϕx)
.

Note that the aggregate dynamics nest the benchmark New Keynesian model,
where the affine coefficients are simply Âi = 1. When this is the case, if the central
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bank only cares about inflation (so ϕx = 0), the determinacy condition (49) simplifies
to the standard condition that ϕπ > 1. Instead, in our model the reaction of the
effective borrowing rate to policy rate changes is a general equilibrium object. In
particular, Âi depends on the risk aversion of arbitrageurs. The follow Corollary
derives comparative statics of the reaction to conventional policy.

Corollary 3.1 (Conventional policy comparative statics). The general equilibrium
responses to conventional policy vary with the underlying parameters of the model:

1. Arbitrageur risk aversion: ∂γ
∂a
< 0, ∂Âi

∂a
< 0, ∂|ωπ |

∂a
< 0, ∂|ωx|

∂a
< 0.

2. Policy rate inertia: ∂γ
∂κi

> 0, ∂Âi

∂κi
> 0, ∂|ωπ |

∂κi
< 0, ∂|ωx|

∂κi
< 0.

3. Policy rate reaction to inflation: ∂γ
∂ϕπ

> 0, ∂Âi

∂ϕπ
> 0, ∂|ωπ |

∂ϕπ
< 0, ∂|ωx|

∂ϕπ
< 0.

4. Policy rate reaction to the output gap: ∂γ
∂ϕx

> 0, ∂Âi

∂ϕx
> 0, ∂|ωπ |

∂ϕx
< 0, ∂|ωx|

∂ϕx
< 0.

5. Consider two different weighting functions ηs(τ) and ηℓ(τ), such that for some T ∗,
ηs(τ) ≥ ηℓ(τ) ⇐⇒ τ ≤ T ∗. Then γs > γℓ, Âs

i > Âℓ
i , |ωs

π| >
∣∣ωℓ

π

∣∣, |ωs
x| >∣∣ωℓ

x

∣∣ where superscripts denote the equilibrium outcomes under the corresponding
weighting functions.

The first result in Cor. 3.1 says shows that as the risk aversion of arbitrageurs
increases, household borrowing becomes less responsive to changes in the policy rate:
Âi is decreasing in the risk aversion of arbitrageurs. This occurs because long-term
borrowing rates under-react to shifts in the short rate, which in turn implies that
household borrowing (and hence output and inflation) responds less than it would
when financial markets exhibit perfect risk-bearing capacity. This result makes clear
that monetary policy is effective only to the extent that policy changes are transmitted
through financial markets, and that transmission is muted due to imperfect arbitrage.

The next result relates to the persistence of the central bank’s policy rule (governed
by the mean reversion in the Taylor rule, κi). This governs the level of inertia in the
central bank’s policy rate (a higher value implies the rate returns to the target rate
faster). Recall that γ determines the equilibrium mean reversion behavior of the
policy rate. So unsurprisingly, if the central bank reduces the inertia in its policy
rule (increases κi) then the policy rate in equilibrium reverts more quickly (higher γ);
because policy rate gaps persist for less time, term premia are less volatile and so the
effective borrowing rate responds more to monetary shocks (higher Âi).
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The intuition regarding the central bank’s sensitivity to inflation or output (ϕπ

and ϕx) is similar to the inertia parameter. The central bank responds more forcefully
to deviations in inflation or output gaps, so in equilibrium the policy rate deviations
subside faster (higher γ). Because they are shorter lived, inflation and output react
to monetary shocks less.

The final result in Cor. 3.1 shows how the model depends on the weighting function
η(τ), which determines the effective borrowing rate. The two weighting functions
correspond to two models where the effective borrowing rate is more geared towards
short-term rates (ηs) or long-term rates (ηℓ). The results says that as the effective
borrowing rate becomes more dependent on long-term rates, the model is less sensitive
to the policy rate. This is because of the under-reaction result discussed above: the
degree of under-reaction is increasing in longer-maturity borrowing rates. Thus, the
effective borrowing rate reacts less to changes in the policy rate; in equilibrium, this
implies that monetary shocks persist longer.

3.2 Quantitative Easing and Tightening

Given that the expectations hypothesis does not hold, purchases by the central bank
may have price effects. This section studies QE and QT policies and shows that
indeed, QE can push down long-term borrowing rates when arbitrage is imperfect.
We now suppose that in addition to setting the short rate, the central bank also
directly purchases longer term bonds through open market operations according to
(41).

Now the affine functional form of bond prices (in terms of log-deviations from
steady state) are given by

− logP
(τ)
t = At(τ)it + AS(τ)St =⇒ µ̃t = Âiit + ÂSSt,

which introduces a new coefficient function AS(τ). The next Proposition characterizes
the aggregate response of the model to QE or QT shocks.

Proposition 4 (Unconventional monetary policy responses). Assume the determi-
nacy condition (49) is satisfied. Whenever a > 0, ÂS < 0 which implies purchases
of long-term bonds by the central bank (St > 0) reduce borrowing rates. Aggregate
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dynamics therefore satisfy

∂πt
∂St

> 0,
∂xt
∂St

> 0.

Additionally, ÂS → 0 as κS → ∞.

Prop. 4 shows that central bank purchases of long-term bonds increase both infla-
tion and the output gap whenever arbitrageurs have imperfect risk-bearing capacity.
This follows because QE purchases reduce term premia and therefore reduce house-
hold borrowing rates. QE effectively reduces the amount of risk which arbitrageurs
are required to hold, which puts downward pressure on returns of all bonds.

Note that this partial equilibrium effect is mitigated by a general equilibrium
effect: the expansionary effects of QE put countervailing upward pressure on the
expected path of short rates. But since arbitrageurs are risk-averse, this upward
pressure is weakened relative to the predictions of the expectations hypothesis. Prop.
4 shows that this indirect effect does not outweigh the direct effect, and it will still be
the case that in general equilibrium QE purchases will push down effective borrowing
rates, leading to an increase in output.

The second result in Prop. 4 shows that the effect of QE depends critically on
the mean reversion properties of purchases. Even when financial markets are highly
disrupted, the aggregate effects will be minimal if the purchases are undone very
quickly.

4 Welfare Effects: Simple Policy Rules

Using the results of the previous section, we explore the welfare consequences and
optimal design of simple policy rules. For now, we assume that the only aggregate
source of uncertainty is natural rate shocks rnt . From Ito’s Lemma, we have

drnt = −κzrnt dt+ σr dBz,t ,

where σr ≡ −κzσz.
We study simple policy rules which (in equilibrium) are only a function of the

natural state variables of the model, which in this case are only natural rate shocks.
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Thus, we study a conventional policy rule which which implements

it = χir
n
t , (50)

for some choice of policy parameter χi. We assume that such a policy is imple-
mentable; determinacy conditions can be satisfied through a Taylor rule like those
considered in Section 3. Balance sheet policies implement

S
(τ)
t = χ

(τ)
S rnt , (51)

for choices of policy parameters χ(τ)
S . We also consider ad-hoc QE or QT policies

according to (41).
The policymaker chooses policy parameters in order to minimize unconditional

social loss

W ≡ 1

2
E
∫ ∞

0

e−ρtLt dt ,

where per-period social welfare loss Lt is derived in (37)-(39). Thus, we consider a
policymaker who is able to commit to simple policy rules, which are functions of the
natural state variables of the economy. In the next section, we explore optimal policy
for a policymaker who conducts (history-dependent) policy under full commitment.

4.1 Optimal Policy: Short Rate Only

First, consider the benchmark case of a risk neutral arbitrageurs: a = 0. Then the
expectations hypothesis holds, so regardless of preferred habitat demand (or cen-
tral bank balance sheet policies), borrowing rates are equalized: µ

(τ)
t = it = χir

n
t .

This implies that the model collapses to the standard RANK case. In particular,
consumption and wage dispersion disappear:

Varτ c(τ)t = Varτ w(τ)
t = 0.

Because divine coincidence holds, the conventional policy rule with χi = 1 which
implements it = rnt achieves first-best: xt = πt = 0 for all periods t. We further
recover the standard QE neutrality result: balance sheet policies do not affect bond
prices (and therefore have no aggregate effects).
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Under risk-neutrality, so long as the central bank faces no costs to setting the
policy rate, first-best is achievable with only conventional policy. The next Proposi-
tion shows that these results fail whenever arbitrage is imperfect (a > 0). We derive
optimal short-rate policy when the central bank does not have access to balance sheet
tools (formally, when balance sheet costs ψ(τ) → ∞).

Proposition 5 (Optimal short rate policy rule). Assume risk aversion a > 0 and
price elasticities α(τ) > 0. Then there exists some χn

i > 1 such that (50) guarantees
xt = 0 and inflation πt = 0 each period. However, the optimal short rate policy rule
is given by it = χ∗

i it, where χ∗
i < χn

i . The optimal short rate policy implies:

1. Bond carry trade returns µ(τ)
t − it are decreasing in the short rate it.

2. Output gaps xt and inflation πt are not identically zero.

3. Consumption and wage dispersion are non-zero: Varτ c(τ)t ̸= 0, Varτ w(τ)
t ̸= 0.

We can understand this result using the intuition derived in the previous sec-
tion. Consider a fall in the natural rate inducing a cut in the policy rate. As it
decreases, bond arbitrageurs want to invest more in the bond carry trade. This
implies an increase in bond prices P (τ)

t , which induces price-elastic habitat bond in-
vestors (α(τ) > 0) to reduce their holdings, and so Z

(τ)
t declines. Through market

clearing, bond arbitrageurs increase their holdings X(τ)
t , which requires a larger bond

carry trade return.
Because of this, risk premia vary over time. Thus, a simple short rate policy is

unable to equalize all borrowing rates. The central bank can choose it = χn
i r

n
t , which

implies that µ̃t = rnt (and therefore closes output gaps and keeps inflation at steady
state). However, fluctuations in the natural rate induce volatile fluctuations in the
policy rate. Ito’s lemma implies

dit = −κzit dt+ χiσr dBz,t ,

hence the volatility of short rate changes is increasing in the responsiveness of con-
ventional policy to natural rates. More volatile short rates implies greater varia-
tion in term premia. Individual Euler equations differ, which implies that consump-
tion choices across the τ households c(τ)t ̸= c

(τ ′)
t . Therefore, consumption dispersion
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Varτ c(τ)t ̸= 0. Differential consumption choices imply differential labor supply deci-
sions, which additionally imply dispersion in wages wt(τ) whenever ϵw < ∞. Thus,
choosing a policy rule which is less reactive to natural rate fluctuations is welfare-
improving.

As the short rate becomes less responsive to natural rates, output gap and inflation
volatility increase. For very small choices of χi, consumption and wage dispersion be-
come negligible. However, inflation and output gap volatility increases substantially.
The optimal choice of χ∗

i balances these forces. At the optimum, shocks to the nat-
ural rate do not fully pass through to the effective borrowing rate: µ̃t ̸= rnt . Thus,
aggregate borrowing demand changes, and hence the output gap xt ̸= 0. Whenever
prices are not fully rigid, this induces fluctuations in inflation through the Phillips
curve, and so πt ̸= 0 as well.

4.2 Optimal Short Rate and Balance Sheet Policy

The failure of conventional policy to achieve first-best is driven by three frictions.
First, because of imperfect pass-through of the policy rate to household borrowing
rates, natural rate shocks are not fully accommodated, implying excessive volatility of
output and inflation. Second, borrowing rates across households differ, implying sub-
optimal consumption dispersion. Thirds, differentiated wages imply inefficient labor
supply dispersion. Simple conventional policy rules cannot overcome all frictions
simultaneously. However, when the central bank has access to frictionless balance
sheet policies, we obtain the following result:

Proposition 6 (Optimal policy separation principle). Assume risk aversion a > 0

and price elasticities α(τ) > 0. Suppose the central bank implements short rate and
balance sheet policy according to

it = rnt , S
(τ)
t = α(τ) logP

(τ)
t .

If short rate policy is frictionless (ψi = 0) and the central bank does not face holding
costs (ψ(τ) = 0), then first-best is achieved:

1. Macroeconomic stabilization: xt = πt = 0 ∀t.

2. Financial stabilization: µ(τ)
t = µ̃t ∀τ .
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3. Consumption and wage equalization: c(τ)t = c
(τ ′)
t , wt(τ) = wt(τ

′) ∀τ, τ ′.

The results follow naturally from our findings regarding ad-hoc policy. The bal-
ance sheet policy in Prop. 6 stabilizes shocks to bond markets by offsetting all habitat
portfolio rebalancing shocks:

S
(τ)
t = −Z(τ)

t =⇒ σ
(τ)
t Λt = 0.

The policy implies that risk premia are zero and thus equalizes borrowing rates across
households: µ(τ)

t = µ̃t. Hence the model collapses to a standard RANK model. The
elimination of risk premia implies that policy shocks are transmitted one-to-one to
borrowing rates, so µ̃t = it. Thus, the policy it = rnt implies output gaps xt = 0; and
because divine coincidence holds, this policy is optimal.

Thus, we derive an optimal separation principle for optimal policy: optimal bal-
ance sheet policy stabilizes financial markets while optimal short rate policy stabilizes
macroeconomic aggregates.

4.3 Optimal Policy: Balance Sheet Only

We now derive the optimal use of balance sheet tools when the central bank faces
constraints on the short rate.4 To capture the essence of short rate constraints in a
simple way, we assume that ψi → ∞ and that i∗t = χ̃ir

n
t where 0 < χ̃i < 1 in (21).

The next Proposition shows that balance sheet tools alone are not enough to achieve
first-best.

Proposition 7 (Optimal balance sheet rule). Assume risk aversion a > 0 and price
elasticities α(τ) > 0. Suppose the short rate in equilibrium evolves according to

it = χ̃ir
n
t , 0 < χ̃i < 1.

Then the balance sheet policy which implements S
(τ)
t = α(τ) logP

(τ)
t still satisfies

financial stabilization (µ(τ)
t = µ̃t ∀τ). Consumption and wage dispersion are zero;

however, output gaps xt and inflation πt are not identically zero.
There exists some balance sheet policy parameters

{
χ
(τ)
S

}
such that µ̃t = rnt and

therefore satisfies macroeconomic stabilization (xt = 0, πt = 0∀t). However, financial
4Recall that we do not model an explicit ZLB in order to utilize our linear-quadratic approxima-

tion techniques.
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stabilization fails (µ(τ)
t ̸= µ̃t ∀τ), and therefore consumption and wage dispersion are

non-zero. The optimal balance sheet rule implies:

1. Output gaps xt and inflation πt are not identically zero. Relative to no balance
sheet policies, output gap and inflation volatility are lower.

2. Consumption and wage dispersion are non-zero: Varτ c(τ)t ̸= 0, Varτ w(τ)
t ̸=

0. Relative to no balance sheet policies, consumption and wage dispersion are
lower.

Prop. 7 shows that when the short rate is constrained, the optimal balance sheet
policy must sacrifice financial stabilization in order to (partially) stabilize macroe-
conomic volatility. While balance sheet tools can continue to equalize borrowing
rates, sub-optimal short rate policy implies that the effective household borrow-
ing rate µ̃t ̸= rnt . Thus, this policy does not achieve macroeconomic stabilization:
xt ̸= 0, πt ̸= 0.

On the other hand, balance sheet policies alone can close the output gap (and
stabilize inflation), but this is also sub-optimal because borrowing rates are no longer
equalized. From (29), with only natural rate shocks we have that µ(τ)

t = it + σ
(τ)
t λt

where

λt ≡ a

∫ T

0

[
α(τ) logP

(τ)
t − S

(τ)
t

]
σ
(τ)
t dτ .

Hence, the policymaker can always guarantee µ̃t = rnt by choosing holdings
{
S
(τ)
t

}
such that

λ∗t =
rnt − it∫ T

0
η(τ)σ

(τ)
t dτ

.

However, because σ(τ)
t ̸= σ

(τ ′)
t this necessitates

µ
(τ)
t = it + σ

(τ)
t

(
rnt − it∫ T

0
η(τ ′)σ

(τ ′)
t dτ ′

)
̸= rnt ,

for some τ (unless it = rnt ).
The intuition is that balance sheet policy works by affecting term premia through

changes in the market price of risk. Although arbitrage is imperfect in this model,
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arbitrageurs still enforce tight restrictions between between the market price of risk
and term premia across maturities. Hence, while in principle the central bank has a
continuum of policy tools

{
S
(τ)
t

}
, in practice it can only manipulate λt.

This is related to the localization results in Vayanos and Vila (2021) and Ray et al.
(2024). In the one-factor model considered here, the effects of QE are fully global.
However, even with more complicated risk structure, localization is not strong enough
to allow balance sheet policy rules alone to achieve first-best.

5 Welfare Effects: Full Commitment

We now study the case of full commitment, where the policymaker can choose short
rate and balance sheet policies as a function of the entire history of shocks. The
policymaker seeks to minimize the conditional social loss function

Wt = Et

∫ ∞

t

1

2
e−ρsLs ds , (52)

where per-period social welfare loss Ls is derived in (37)-(39). Our optimal separate
result in Prop. 6 show that simple policy rules can achieve first-best when the policy-
maker faces no short rate or balance sheet frictions. However, when policy frictions
are non-negligible, full commitment policies can improve on simple policy rules.

Theorem 1 (Optimal policy under full commitment). Collect the state variables yt

and jump variables xt into a vector Yt and policy tools into the vector ut, so that
social loss is given by

W0 =
1

2
E0

∫ ∞

0

e−ρt
(
Y⊤

t RYt + u⊤
t Qut

)
dt , y0 given. (53)

The policymaker chooses ut = FYt, which induce equilibrium dynamics

dYt = −ΥYt dt+ S dBt , (54)

where the feedback matrix Υ ≡ Υ(F) either explicitly or implicitly depends on the
policymaker reaction function. Necessary conditions for optimal choice of F∗ are
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given by

y⊤
0

(
∂iP11 − ∂iP12P

−1
22 P21 −P12P

−1
22 ∂iP21 +P12

(
P−1

22 ∂iP22P
−1
22

)
P21

)
y0 = 0

where P solves the Lyapunov equation ρP = R + F⊤QF − PΥ − Υ⊤P, and ∂i

represents the derivative of partitioned elements of P with respect to the i element of
F∗, which solve the Lyapunov equation

ρ∂iP = Q∂iF+ ∂iF
⊤Q− ∂iPΥ−Υ⊤∂iP−P∂iΥ− ∂iΥ

⊤P.

The equilibrium dynamics of the model are

dqt = −

[
I 0

P21 P22

]
Υ

[
I 0

−P−1
22 P21 P−1

22

]
qt dt+

[
I 0

P21 P22

]
S dBt

≡ −Γqt dt+ σ dBt , (55)

where q0 =
[
y0 0

]⊤
. Equilibrium in bond markets is given by Prop. 2.

Full commitment allows for potential improvements in social welfare because the
induced dynamics of the economy in (55) are richer than when the central bank follows
simple policy rules. This allows the central bank to reduce volatility of interest rate
changes, while keeping stronger control over the entire path of the policy rate. Note
that

dit = −e⊤i Γqt dt+ e⊤i σ dBt , ei ≡ e⊤1

[
I 0

−P−1
22 P21 P−1

22

]
F∗,

where it ≡ e⊤1 ut. The term e⊤i σ can be made smaller (inducing smaller term premia
in equilibrium), while still allowing for sufficiently rich expected movements of the
short rate

∫ t

0
is ds = e⊤i

∫ t

0
qs ds.

In general, the necessary conditions in 1 are complicated. We explore the implica-
tions in a stylized numerical example. Suppose that the central bank only has access
to short rate policy (formally, ψ(τ) → ∞). We assume that there are two types of
households with equal measure who borrow using short- and long-term bonds τ s, τ ℓ.
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Formally,

η(τ) =
1

2
δ̂(τ − τ s) +

1

2
δ̂(τ − τ ℓ),

where δ̂(τ) is the dirac delta function. We make further parametric simplifying as-
sumptions: prices are fully rigid (θ → ∞ =⇒ δ → 0 in (36)); labor markets are effi-
cient (ϵw → ∞); and unitary intertemporal and labor supply elasticities (ς = φ = 1).
This implies that the policymaker problem simplifies to

Wt = max
{it}

Et

∫ ∞

t

(
xt(s)

2 + xt(ℓ)
2
)
ds

subject to: dxt(s) = (µ
(s)
t − rnt ) dt

dxt(ℓ) = (µ
(ℓ)
t − rnt ) dt

drnt = −κzrnt dt+ σr dBz,t .

We additionally simplify the bond markets to focus on “short” and “long” maturities
by assuming that the habitat elasticity function is also given by α(τ) = αδ̂(τ−τ ℓ), and
take limits τ s → 0, τ ℓ → ∞. This assumption regarding habitat elasticities implies
that the fixed point problem described in Lemma 2 is scalar. Numerical exercises
show that, relative to the case without full commitment, the policymaker chooses to
react to movements in xt(s) and xt(ℓ) (in addition to the natural rate rnt ).

Intuitively, the tradeoff for short rate policy is that greater pass-through to house-
holds (through more aggressive policy reactions to shocks) comes at the cost of
larger and more volatile term premia. Full commitment partially relaxes this link.
Household decisions depend on entire expected path of borrowing rates

∫∞
0
µ
(τ)
t dτ ,

whereas arbitrageur risk compensation depends on volatility of short-run fluctuations
dit , dS

(τ)
t . The optimal policy under full commitment exploits this in equilibrium by

conditioning policy on both xt(s), xt(ℓ), and rnt .

6 Extensions and Tests

We consider extensions of the baseline model studied in the previous section.
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6.1 Demand Risk and Financial Shocks

First, we obtain identical results when allowing for shocks to habitat demand: β(τ)
t

is now an additional stochastic demand factor. The optimal separation principle still
holds with ψ(τ) = 0, but QE must be more reactive:

S
(τ)
t = α(τ) logP

(τ)
t + β

(τ)
t .

So long as the optimal balance sheet policy is implemented, the optimal short rate
policy still implements it = rnt .

In this case however, we have an additional result: if noise demand dynamics
are such that demand falls in response to increases in the natural rate (that is, β(τ)

t

increases in response to an increase in rnt ), then it is optimal to expand the balance
sheet S(τ)

t while simultaneously hiking short rates it. Intuitively, suppose during a
tightening cycle, in the absence of QE we expect to observe an increase in term premia.
Then the optimal balance sheet policy is to conduct additional QE purchases in order
to offset the spike in term premia. This suggests that at times, optimal conventional
and unconventional policy seem to be at odds with one another.

6.2 Cost-Push Shocks

Next, we consider the model which cost-push shocks, which implies that divine coin-
cidence does not hold:

dπt = (ρπt − δxt − ut) dt .

For simple time-consistent policies considered in Section 4, our separation princi-
ple still holds when policy frictions are absent. Unfortunately, this implies that the
first-best is not achievable. Optimal balance sheet policy still stabilizes term pre-
mia, which implies that short rate policy must contend with the output gap and
inflation tradeoffs as is standard. The reason is that despite multiple policy in-
struments, (un)conventional policy only affects aggregate outcomes through changes
in the effective borrowing rate µ̃t. Formally, taking any feasible path {xt, πt, µ̃t}t
from an implementation implying policies

{
ĩt, S̃

(τ)
t

}
t
, this can also be achieved with

it = µ̃t, S
(τ)
t = α(τ) logP

(τ)
t + β

(τ)
t . This guarantees Varτ c(τ)t = Varτ w(τ)

t = 0 and
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hence strictly dominates.

6.3 Non-Zero Term Premia in the First-Best

Our approximation approach thus far implies that in the first-best, expected carry
trade returns are zero. This arises endogenously in our model but is based on our sim-
plifying riskless approximation method. While this simplifies our analytical results, it
is nevertheless a strong assumption. Suppose instead that first-best bond carry trade
returns are given by some (exogenous) ν(τ) ̸= 0. We find that our separation principle
still holds when ν(τ) is achievable, but optimal short rate policy is a function of ν(τ).
The intuition is a combination of previous results. Aggregate outcomes arise through
changes in the effective borrowing rate µ̃t (as before). Optimal balance sheet policy
guarantees µ(τ)

t − it ≡ ν(τ) and hence µ̃t = it +
∫ T

0
η(τ)ν(τ) dτ ≡ it + ν̃. Thus, optimal

short rate policy implements it = rnt − ν̃.

6.4 Measuring Policy Objectives: Return Predictability

We now consider simple observable tests related to the optimality of balance sheet
policies. We consider the bond return predictability regressions of Fama and Bliss
(1987) (FB):

1

∆τ
log

(
P

(τ−∆τ)
t+∆τ

P
(τ)
t

)
− y

(∆τ)
t = a

(τ)
FB + b

(τ)
FB

(
f
(τ−∆τ,τ)
t − y

(∆τ)
t

)
+ εt+∆τ .

These regression coefficients measure how the slope of the term structure predicts
excess returns. Figure 1 shows the well-known result that (in the full sample), Fama-
Bliss coefficients are positive, and an increasing function of maturity.

In our model, when the central bank does not use balance sheet policies:

b̄
(τ)
FB > 0.

However, if balance sheet policy is successfully pursuing financial stabilization, then

b̄
(τ)
FB > b

(τ)
FB → 0.
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Figure 1: Fama-Bliss Coefficients: Treasuries, Full Sample

But instead if balance sheet policy is pursuing macroeconomic stabilization, we have

b
(τ)
FB > b̄

(τ)
FB.

We examine these stylized predictions by studying how FB regression coefficients vary
as a function of different monetary policy regimes.
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Figure 2: Fama-Bliss Coefficients: 10-year Treasuries, Rolling Sample

Figure 2 estimates rolling Fama-Bliss coefficients (fixing τ = 10 as a baseline
maturity). We see that Fama-Bliss coefficients increased substantially during the
initial QE regime, but have fallen and even become negative in recent years. This is
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consistent with the predictions of the model if QE was initially undertaken for purely
macroeconomic stabilization purposes, but has shifted in part to deliver financial
stabilization.

7 Concluding Remarks

This paper develops a tractable general equilibrium model with market segmentation,
nominal frictions, and household heterogeneity. We first derive results for how mon-
etary policy (conventional and unconventional) affects aggregate dynamics. We next
show that welfare losses arise from three sources: (i) excessive volatility in inflation
and output, as is standard in New Keynesian models; (ii) imperfect risk-sharing and
excess consumption dispersion; and (iii) labor market frictions and excess wage dis-
persion. The frictions associated with consumption and wage dispersion arise due to
market segmentation and excessive volatility of term premia. Optimal short rate and
balance sheet policies are characterized by a sharp separation result: conventional
policy targets macroeconomic stability, while unconventional policy targets financial
stability. Optimal policy removes excess volatility of risk premia and hence improves
risk-sharing across households, while reducing excess macroeconomic volatility. Pol-
icy constraints on either the short rate or balance sheets imply tradeoffs between
these two policy objectives.
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A Proofs

Proof of Lemma 1. Collect all state and jump variables in a vector Yt =
[
y⊤
t x⊤

t

]⊤
.

The interest rate process it and habitat demand factor processes β(τ)
t are all affine

functions of Yt. Moreover, the (linearized) Phillips curve and IS equation are also
affine functions of Yt, since from equation (43) µ̂t = Â⊤yt + Ĉ is affine in the state
variables. Aggregate dynamics can thus be written

dYt = −Υ
(
Yt − Ȳ

)
dt+ S dBt . (A1)

Note that Υ depends on Â, but which we currently take as given. Then the rational
expectations equilibrium is found immediately from Buiter (1984). Partition the
eigenvalues and eigenvectors as follows:

Υ = QΛQ−1, Λ =

[
Λ1 0

0 Λ2

]
, Q =

[
Q11 Q12

Q21 Q22

]
,

where the partitions correspond to the state yt and jump xt variables. If the number
of “stable” eigenvalues (non-negative real parts) equals the number of state variables,
then the rational expectations equilibrium dynamics are given by (44), where

Γ = Q11Λ1Q
−1
11 , Ω = Q21Q

−1
11 . (A2)

Proof of Lemma 2. Since asset prices are affine functions of the state, which evolves
according to (44), Ito’s Lemma implies that dP

(τ)
t

P
(τ)
t

= µ
(τ)
t dt + σ(τ) dBt, with σ(τ) =

−A(τ)⊤σ and

µ
(τ)
t = A′(τ)⊤yt + C ′(τ) +A(τ)⊤Γ (yt − ȳ) +

1

2
A(τ)⊤ΣA(τ), (A3)

where Σ ≡ σσ⊤. Differentiating the arbitrageur budget constraint with respect to
holdings X(τ)

t gives the optimality conditions

µ
(τ)
t − it = a

[∫ T

0

X
(τ)
t A(τ) dτ

]⊤
ΣA(τ).
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Substituting the affine pricing equation into the habitat demand curves gives
Z

(τ)
t = [α(τ)A(τ)−Θ(τ)]⊤ yt where

Θ(τ) =
[
. . . θk(τ) . . .

]⊤
. (A4)

Then substitute market clearing conditions X(τ)
t = −Z(τ)

t into the optimality condi-
tions and collect terms that are linear in the state yt to get:

A′(τ) +MA(τ)− ei = 0, (A5)

where M is given by equation (47). Taking M as given, this is a linear system of
differential equations. To derive initial conditions, note that at maturity, the riskless
bonds pay $1 so the τ = 0 prices are given by P

(0)
t = 1. Hence, we have A(0) = 0.

Then assuming M is diagonalizable and invertible, the solution is given by equation
(46).

Proof of Proposition 2. In an affine equilibrium we have that µ̃t =
∫ T

0
η(τ)µ

(τ)
t dτ .

Substituting equations (A3) and (A5) into this expression and collecting terms which
are linear in the state yt gives equation (48). Equilibrium is the solution of the fixed
point problem implicitly defined by equations (47) and (48). Rewrite these conditions
in the following function:

f(Â;M; a) =

ei + (Γ(Â)⊤ −M
)
ν(M)− Â

vec
{
Γ(Â)⊤ − a ·Λ(M)−M

} , (A6)

where Λ(M) and ν(M) are the integral terms from equations (47) and (48). In
both cases, dependence on M comes through the affine coefficients A(τ). We have
also made explicit the dependence of Γ on Â, which can be seen in the proof of
Lemma 1. If J ≡ dimyt, then dimM = J × J and dim Â = J and the function
f : RJ(J+1)+1 → RJ(J+1). For any value of a, equilibrium is defined by f(Â;M; a) = 0.

We now analyze the solution in a neighborhood around a = 0. For a = 0, clearly
Â = ei and M = Γ(ei)

⊤. The partial derivatives evaluated at this point are given
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by:

∂f

∂Âj

=

[∂Γ⊤
/
∂Âj

]
ν(M)− ej

vec
[
∂Γ⊤

/
∂Âj

]  , ∂f

∂Mkl

=

[
eke

⊤
l ν(M)

− vec eke
⊤
l

]
,

where ej, ek, el are standard normal basis vectors. The matrix ∂Γ
/
∂Âj is the deriva-

tive of the state dynamics matrix Γ with respect to the j-element of Â; because this
depends on derivatives of the eigendecomposion defined in the proof of Lemma 1,
even in the case of a = 0 this is a complicated expression. Nevertheless, from this we
can show that the Jacobian of f with respect to Â,M evaluated at the a = 0 solution
has full rank. In fact, writing this Jacobian in block form, we have

Df ≡

[
D11 D12

D21 −IJ2

]
, (A7)

and D12 =
[
IJ · ν1 . . . IJ · νJ

]
, where νj is the j-element of ν(M). Because the

elementary row operations which transform D12 into the zero matrix simultaneously
transform D11 into −IJ , detDf = 1 and the result follows from the implicit function
theorem.

B Model Details

B.1 Second-Order Approximations

Lo-quadratic approximation of functions of the form:

F ≡ g

[∫ T

0

η(τ)f (Xt(τ)) dτ

]
= g

[∫ T

0

η(τ)f
(
X̄ext(τ)

)
dτ

]

44



We have

F

∣∣∣∣
SS

= g(f(X̄))

∂F

∂xt(τ ′)

∣∣∣∣
SS

= X̄g′(f(X̄))f ′(X̄)η(τ ′) dτ ′

∂2F

∂xt(τ ′)∂xt(τ ′′)

∣∣∣∣
SS

= g′′(f(X̄))(X̄f ′(X̄))2η(τ ′) dτ ′ η(τ ′′) dτ ′′

∂2F

∂xt(τ ′)2

∣∣∣∣
SS

= g′′(f(X̄))(X̄f ′(X̄))2(η(τ ′) dτ ′)2 + g′(f(X̄))X̄(f ′(X̄) + X̄f ′′(X̄))η(τ ′) dτ ′

Thus, the second order approximation is

F ≈ ∆0 +∆1Eτxt(τ) +
1

2
∆2[Eτxt(τ)]

2 +
1

2
∆3Eτ [xt(τ)

2]

= ∆0 +∆1Eτxt(τ) +
1

2
(∆2 +∆3)[Eτxt(τ)]

2 +
1

2
∆3V arτxt(τ)

where

∆0 ≡ g(f(X̄))

∆1 ≡ X̄g′(f(X̄))f ′(X̄)

∆2 ≡ g′′(f(X̄))(X̄f ′(X̄))2

∆3 ≡ g′(f(X̄))X̄(f ′(X̄) + X̄f ′′(X̄))

and

Eτ [h(xt(τ))] ≡
∫ T

0

η(τ)h(xt(τ)) dτ

V arτ [h(xt(τ))] ≡
∫ T

0

η(τ)h(xt(τ))
2 dτ − Eτ [h(xt(τ))]

2

The second-order approximation follows from taking the limit of the finite second-
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order approximation at grid points i = 1, . . . , N with ∆i steps:

F = g

[
N∑
i=1

η(i)f
(
X̄ext(i)

)
∆i

]

F ≈ F̄ +
N∑
i=1

[
∂F

∂x(i)

∣∣∣∣
SS

]
x(i) +

1

2

N∑
i=1

N∑
j=1

[
∂2F

∂x(i)∂x(j)

∣∣∣∣
SS

]
x(i)x(j)

and note that the second derivative in the double summation has the additional terms
when i = j.

B.1.1 Examples

Simple mean: f(z) = g(z) = z∫ T

0

η(τ)X̄ext(τ) dτ

≈ X̄

{
1 + Eτxt(τ) +

1

2
[Eτxt(τ)]

2 +
1

2
V arτxt(τ)

}
Mean of function: g(z) = z∫ T

0

η(τ)f
(
X̄ext(τ)

)
dτ

≈ f(X̄) + X̄

{
f ′(X̄)Eτxt(τ) +

1

2
(f ′(X̄) + X̄f ′′(X̄))(V arτxt(τ) + [Eτxt(τ)]

2)

}
Function of mean: f(z) = z

g

[∫ T

0

η(τ)X̄ext(τ) dτ

]
≈ g(X̄) + X̄

{
g′(X̄)Eτxt(τ) +

1

2
g′(X̄)V arτxt(τ) +

1

2
(g′(X̄) + X̄g′′(X̄))[Eτxt(τ)]

2

}
Thus

f

[∫ T

0

η(τ)X̄ext(τ) dτ

]
−
∫ T

0

η(τ)f
(
X̄ext(τ)

)
dτ

≈ −1

2
X̄2f ′′(X̄)V arτxt(τ)
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Inverse: g = f−1

f−1

[∫ T

0

η(τ)f
(
X̄ext(τ)

)
dτ

]
≈ X̄

{
1 + Eτxt(τ) +

1

2

[
1 + X̄

f ′′(X̄)

f ′(X̄)

]
V arτxt(τ) +

1

2
[Eτxt(τ)]

2

}
CES: [∫ T

0

η(τ)
(
X̄ext(τ)

) ϵ−1
ϵ dτ

] ϵ
ϵ−1

≈ X̄

{
1 + Eτxt(τ) +

1

2

[
ϵ− 1

ϵ

]
V arτxt(τ) +

1

2
[Eτxt(τ)]

2

}
Thus ∫ T

0

η(τ)X̄ext(τ) dτ −
[∫ T

0

η(τ)
(
X̄ext(τ)

) ϵ−1
ϵ dτ

] ϵ
ϵ−1

≈ 1

2
X̄
1

ϵ
V arτxt(τ)

CRRA utility difference from RANK:

1

1− ς

[∫ T

0

η(τ)X̄ext(τ) dτ

]1−ς

− 1

1− ς

∫ T

0

η(τ)
(
X̄ext(τ)

)1−ς
dτ

≈ 1

2
X̄1−ςςV arτxt(τ)

B.2 Social Welfare: Aggregate Relationships

Equilibrium equations. Consumption:

Ct =

∫ T

0

η(τ)Ct(τ) dτ (B1)

Ct = Yt

[
1− 1

2
θπ2

t −
1

2
ψi(it − īt)

2 − 1

2

∫ T

0

ψ(τ)
(
S
(τ)
t

)2
dτ

]
(B2)

Production:

Yt = ZtLt (B3)
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Aggregate labor/wage index:

Lt =

[∫ T

0

η(τ)Nt(τ)
ϵw−1
ϵw dτ

] ϵw
ϵw−1

(B4)

Wt =

[∫ T

0

η(τ)Wt(τ)
1−ϵw dτ

]1−ϵw

(B5)

Labor demand and labor clearing:

Nt(τ) =

(
Wt(τ)

Wt

)−ϵw

Lt =⇒ Wt(τ) =

(
Nt(τ)

Lt

)− 1
ϵw

Wt (B6)

Intratemporal wage/consumption/labor:

(1 + τw)

(
ϵw − 1

ϵw

)
Wt(τ) = Ct(τ)

ςNt(τ)
φ (B7)

=⇒ (1 + τw)

(
ϵw − 1

ϵw

)
L

1
ϵw
t Wt = Ct(τ)

ςNt(τ)
φ+ 1

ϵw (B8)

Output gap:

Xt =
Yt
Y n
t

(B9)

B.2.1 Social Welfare Approximation

The log-quadratic approximation of deviations of social welfare from the first-best are
given by

W0 ≡
∫ ∞

0

e−ρtLt dt

Lt = U (Cn
t , N

n
t )−

∫ T

0

η(τ)U (Ct(τ), Nt(τ)) dτ

=
1

2
(ς + φ)x2t +

1

2
θπ2

t

+
1

2
ςV arτct(τ) +

1

2
φV arτnt(τ) +

1

2

1

ϵw
V arτnt(τ)

+
1

2
ψi(it − īt)

2 +
1

2

∫ T

0

ψ(τ)
(
S
(τ)
t

)2
dτ
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We have

ςV arτct(τ) + φV arτnt(τ) +
1

ϵw
V arτnt(τ) =

ς + ς2φ(
1
ϵw

+ φ
)2
V arτct(τ) + ϵwV arτwt(τ)

and

V arτwt(τ) =

(
ς

1 + ϵwφ

)2

V arτct(τ)

The loss associated with V arτct(τ) comes from imperfect risk-sharing. The loss as-
sociated with V arτwt(τ) comes from labor market inefficiencies.

B.2.2 Equilibrium Approximations: Details

Throughout we make use of big-O properties:

f = O(h), g = O(k) =⇒ f + g = O(h+ k), f · g = O(h · k)

=⇒ f(τ) = O(h(τ)) =⇒ Eτf(τ) ≡
∫
η(τ)f(τ) dτ = O

(∫
η(τ)h(τ) dτ

)
≡ O(Eτh(τ))

We use the variable ξt to denote the generic expansion point around the steady state
for any variable, so that

f(xt) = O(ξt), g(yt) = O(ξt) =⇒ f(xt) + g(yt) = O(ξt), f(xt) · g(yt) = O(ξ2t )

Aggregate and HH member consumption from (B1)

Ct ≡ C̄ect = C̄

{
1 + ct +

1

2
c2t

}
+O(ξ3t )

Ct(τ) ≡ C̄ect(τ) = C̄

{
1 + ct(τ) +

1

2
ct(τ)

2

}
+O(ξ3t )

=⇒ ct +
1

2
c2t +O(ξ3t ) = Eτct(τ) +

1

2
Eτ [ct(τ)]

2 +
1

2
V arτct(τ) +O(ξ3t )

Also, aggregate labor supply Nt ≡
∫ T

0
η(τ)Nt(τ) dτ (which is not equivalent to aggre-
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gate labor index Lt):

Nt ≡ N̄ent = N̄

{
1 + nt +

1

2
n2
t

}
+O(ξ3t )

Nt(τ) ≡ N̄ent(τ) = N̄

{
1 + nt(τ) +

1

2
nt(τ)

2

}
+O(ξ3t )

=⇒ nt +
1

2
n2
t +O(ξ3t ) = Eτnt(τ) +

1

2
Eτ [nt(τ)]

2 +
1

2
V arτnt(τ) +O(ξ3t )

From consumption goods market clearing (B2)

C̄ect = Ȳ eytedt

where dt is the log of the deadweight loss terms in (B2) (which in levels is equal to
one in SS). Since C̄ = Ȳ , we have

ct +
1

2
c2t +O(ξ3t ) = (yt + dt) +

1

2
(yt + dt)

2 +O(ξ3t )

Additionally, a second-order expansion of deadweight loss dt gives

dt = −1

2

[
θπ2

t + ψi(it − īt)
2 +

∫ T

0

ψ(τ)
(
S
(τ)
t

)2
dτ

]
+O(ξ3t )

≡ −1

2
d̃t +O(ξ3t )

and also

d2t = O(ξ3t )

dtvt = O(ξ3t )

for any variable vt (in terms of deviations from steady state).
Thus

ct +
1

2
c2t +O(ξ3t ) = yt +

1

2
y2t −

1

2
d̃t +O(ξ3t )

Production from (B3)

yt = zt + ℓt
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Labor and wage indices from (B4)

ℓt +
1

2
ℓ2t +O(ξ3t ) = Eτnt(τ) +

1

2
Eτ [nt(τ)]

2 +
1

2

ϵw − 1

ϵw
V arτnt(τ) +O(ξ3t )

wt +
1

2
w2

t +O(ξ3t ) = Eτwt(τ) +
1

2
Eτ [wt(τ)]

2 +
1

2
(1− ϵw)V arτwt(τ) +O(ξ3t )

Combining with aggregate labor supply

ℓt +
1

2
ℓ2t +O(ξ3t ) = nt +

1

2
n2
t −

1

2

1

ϵw
V arτnt(τ) +O(ξ3t )

Labor demand from (B6)

nt(τ) = −ϵw(wt(τ)− wt) + ℓt

=⇒ Eτnt(τ) = −ϵw(Eτwt(τ)− wt) + ℓt

V arτnt(τ) = ϵ2wV arτwt(τ)

Intratemporal HH conditions from (B7)

wt(τ) = ςct(τ) + φnt(τ)

=⇒ Eτwt(τ) = ςEτct(τ) + φEτnt(τ)

V arτwt(τ) = ς2V arτct(τ) + φ2V arτnt(τ) + 2Covτ (ct(τ), nt(τ))

Output gap from (B9)

xt = yt − ynt

Utility

U(Ct(τ), Nt(τ))− Ū = Z̄χ

{
ct(τ) +

1

2
(1− ς)ct(τ)

2 − nt(τ) +
1

2
(1 + φ)nt(τ)

2

}
+O(ξ3t )
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where Ū = U(C̄, N̄) and χ ≡ (1−ς)(1+φ)
ς+φ

. Thus social welfare

Ut ≡
∫ T

0

η(τ)U(Ct(τ), Nt(τ)) dτ

Z̄−χ(Ut − Ū) = Eτct(τ) +
1

2
(1− ς)

(
Eτ [ct(τ)]

2 + V arτct(τ)
)

− Eτnt(τ)−
1

2
(1 + φ)

(
Eτ [nt(τ)]

2 + V arτnt(τ)
)
+O(ξ3t )

Second-order approximations of C1−ς
t /(1− ς) and L1+φ

t /(1 + φ) give

ct +
1

2
(1− ς)c2t +O(ξ3t ) = Eτct(τ) +

1

2
(1− ς)Eτ [ct(τ)]

2 +
1

2
V arτct(τ) +O(ξ3t )

ℓt +
1

2
(1 + φ)ℓ2t +O(ξ3t ) = Eτnt(τ) +

1

2
(1 + φ)Eτ [nt(τ)]

2 +
1

2

ϵw − 1

ϵw
V arτnt(τ) +O(ξ3t )

Thus social welfare

Z̄−χ(Ut − Ū) = ct +
1

2
(1− ς)c2t − ςV arτct(τ)− ℓt −

1

2
(1 + φ)ℓ2t −

(
φ+

1

ϵw

)
V arτnt(τ) +O(ξ3t )

Combining with the second-order approximations of consumption and production:

ct +
1

2
(1− ς)c2t = (yt + dt) +

1

2
(1− ς) (yt + dt)

2

= yt −
1

2
d̃t +

1

2
(1− ς)y2t +O(ξ3t )

ℓt +
1

2
(1 + φ)ℓ2t = (yt − zt) +

1

2
(1 + φ) (yt − zt)

2

In the first-best, we have

ynt =
1 + φ

ς + φ
zt

=⇒ yt = xt +
1 + φ

ς + φ
zt ≡ xt +

χ

1− ς
zt

yt − zt = xt +
1− ς

ς + φ
zt ≡ xt +

χ

1 + φ
zt
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Thus

yt +
1

2
(1− ς)y2t − (yt − zt)−

1

2
(1 + φ) (yt − zt)

2

= zt +
1

2
(1− ς)

(
xt +

χ

1− ς
zt

)2

− 1

2
(1 + φ)

(
xt +

χ

1 + φ
zt

)2

= zt +
1

2
χz2t −

1

2
(ς + φ)x2t

And note social welfare at the first-best is

Z̄−χ(Un
t − Ū) = zt +

1

2
χz2t +O(ξ3t )

Combining, we have that social welfare differences from the first-best are

Z̄−χ(Un
t − Ut) =

1

2
(ς + φ)x2t +

1

2
d̃t + ςV arτct(τ) +

(
φ+

1

ϵw

)
V arτnt(τ) +O(ξ3t )

The variance terms are related as follows:(
φ+

1

ϵw

)2

V arτnt(τ) = ς2V arτct(τ)

V arτwt(τ) =

(
1

ϵw

)2

V arτnt(τ)

Thus

ςV arτct(τ) +

(
φ+

1

ϵw

)
V arτnt(τ) =

(
ς

φ+ 1
ϵw

)(
ς + φ+

1

ϵw

)
V arτct(τ)

We can also decompose these terms as follows:

ςV arτct(τ) + φV arτnt(τ) =
ς

φ

(
φ+ ς

[
φϵw

1 + φϵw

]2)
V arτct(τ)

1

ϵw
V arτnt(τ) = ϵwV arτwt(τ)
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