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1. Introduction

Cities are economic dynamos. They are hubs of innovation and breeding grounds for
new industries. Highly skilled workers, entrepreneurs, and scientists congregate in cities
to take advantage of the efficiencies of thick markets and the externalities associated
with agglomeration. In 2010, the 27 cities that constituted the top decile of the MSA size
distribution accounted for 47% of US population, 54% of output, and 65% of patents (the
data are discussed below). Cities are often referred to as “engines of economic growth."

In this paper we evaluate this idea quantitatively. Our approach follows Fogel’s (1964),
analysis of the role of railroads in US economic growth. Prior to Fogel’s work it was
widely noted that late 19th century railroads carried the bulk of inter-regional trade, trade
that was in turn a vital driver of growth. The natural conclusion was that railroads were
necessary for that growth. Fogel’s innovation was to note that, even though railroads
were in practice the dominant carrier of freight, in a world without railroads the same
freight traffic could still flow, only at higher cost – which he showed by constructing the
transportation network that could have existed in such a case. Analogously, we would
like to ask how much slower US economic growth would have been, or how much poorer
the country would be today, if the large cities in which so much economic activity takes
place had not existed. This question cannot be answered by simply observing how much
output is produced in cities or how much inventive activity takes place there. Had big
cities not existed, much of the benefit of agglomeration would have been lost, but there
still would have been skilled workers, entrepreneurs, new ideas waiting to be discovered,
and so on.

Our main tools for pursuing this agenda will be explicit estimates of urban scale
effects in two specific dimensions. The first is a static agglomeration effect that makes
production of goods and services in larger cities more efficient. The second is a similar
agglomeration effect that makes production of inventions in large cities more efficient.
Because new technologies raise productivity everywhere in the country and technological
progress accumulates over time, this latter effect has an impact external to a particular
city and works dynamically. We begin with existing estimates of the magnitudes of these
effects. Using a simple growth model, we consider counterfactual scenarios where urban
scale – specifically, the size of the largest cities – differs from the historically observed
path. The gap between income (or growth) in the counterfactual relative to the historical
baseline is our measure of the growth effects of cities.

Throughout our analysis, we take both the observed and counterfactual distributions
of city sizes as given. This relieves us of the problem of specifying the equilibrium
process that determines this distribution, a problem that is itself the subject of a large and
distinguished literature (Duranton and Puga, 2023, Fajgelbaum and Gaubert, 2020, Hsieh
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and Moretti, 2019, for example). If we were instead to treat realized and counterfactual
distributions of city sizes as the consequences of some explicit equilibrium process, our
conclusions would be specific to the particular driver of the distribution of city sizes
under consideration, such as zoning restrictions or transport costs. This would reduce
the generality of our results. By contrast, our approach, which follows the literatures on
development and growth accounting (Caselli, 2005, Hulten, 2010), requires remarkably
weak assumptions and allows an immediate mapping from data to results.

The rest of this paper is organized as follows. Section 2 describes the data on
city-level population, output, and patents that we use, and presents an overview of
their contemporary and historical relationship. Section 3 introduces our counterfactual
approach to assessing the importance of urban scale and applies it to study the effect
of the distribution of city sizes statically on total factor productivity. We specifically
consider counterfactual scenarios in which MSAs in the US are limited in population
to one million or one hundred thousand individuals. Section 4 then takes the same
approach to study technological progress, using data on MSA-level patents to assess the
impact of the city size distribution on inventive activity at a point in time. In Section 5,
we then cumulate differences in inventive activity between our counterfactual and the
baseline of the actual development of the US, to calculate the reduction in TFP due to
slower technological progress that results from limitations on city sizes. In Section 6, we
combine the static and dynamic effects to calculate the overall impact on output of our
counterfactual restriction on city sizes. Section 7 concludes.

2. A First Look at the Data

We investigate how the distribution of city sizes affects aggregate output via two mecha-
nisms that operate at the city level. The first is a static agglomeration effect that leads to
increases in city level productivity as city size increases. The second is a similar increase
in the productivity of cities at research as city size increases. Because research output
improves economy wide productivity, scale effects in city level research productivity
increase economy wide productivity, an effect that compounds over time. To set the
stage for this investigation, we present data on the cross sectional relationship between
city size, as measured by population, city output, and research, as measured by patents.

For our cities, we consider a set of 275 constant boundary MSAs in the continental US
defined to the same boundaries as Duranton and Puga (2023), along with a single rural
area that aggregates all non-metropolitan counties.1 We construct decadal population
data by combining population data in replication files from Duranton and Puga (2023)

1Strictly, our MSAs are the set of all CMSAs, MSAs and NECMAs drawn to 2000 boundaries.
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with 1900-1990 county population data from Forstall and NBER (1995). This results in an
MSA by decade panel of population stretching from 1900 to 2010.2

We measure output using the county level output data from the BEA (US-
DOC/BEA/RD, 2023), and aggregate counties to MSAs. These data are available begin-
ning in 2000.3 We rely on the CUSP data (Berkes, 2018), to measure patents. These data
report on all patents issued by the US Patent office from 1836 to 2015, along with the year
of issue and county of residence for all listed inventors. Using these data, and pro-rating
patents with multiple inventors, we construct county-by-year counts of patents. Because
MSAs are defined as collections of counties, we can easily aggregate to counts of patents
produced in each MSA during each decade, e.g. 1900-1909, from 1900 to 2010.

Figure 1(a) is a histogram of population, output, and patents across cities for the
year 2010. Cities are grouped in deciles by population, and we include an eleventh
non-MSA category. The figure shows the importance of large cities. San Antonio, with a
population of 1.99 million, is the smallest MSA in the top decile. In total, the top decile
of cities accounted for 47% of population, 54% of output, and 65% of patents. Large
cities have higher per-capita output and patent production than small cities, on average.
Non-metropolitan counties accounted for 19% of population, 14% of output and 6% of
patents.

Figures 1(b) and 1(c) repeat the analysis of Figure 1(a) for the years 1900 and 1950,
although we have no MSA-level output data for these years. The concentration of
patenting in the largest decile of cities is less pronounced in 1900 and 1950 than in
2010. In 1900 there is also a significant over-representation of patents in the second
largest decile of cities. The under representation of non-MSA areas in patenting is more
pronounced in the earlier years.

Figure 2 describes correlations in our data in 2010. Panel (a) describes the relationship
between the log of MSA output and log population. The tight linear relationship of the
logs implies an elasticity of output per capita with respect to population of 8%. This
is slightly smaller than the 13% elasticity reported by Glaeser and Gottlieb (2009) for
the same regression using data for 2000 and slightly different MSA definitions. Panel (b)
describes the relationship between the log of MSA patents and the log of population. The
relationship between patents and population is noticeably nosier than is the relationship
between output and population, and also considerably steeper. The elasticity of patents
to city population in the raw data is 41% in 2010. Panel (c) describes the relationship
between patents and output. Unsurprisingly, this relationship is also positive. More

2Our sample of MSAs decreases slightly in the early part of our sample. This largely reflects the fact
that some states had not yet joined the union and so census data and county boundaries do not exist. For
example, Arizona, New Mexico and Oklahoma all joined the US after 1900.

3The BEA productivity data does not report for the two counties that make up the Danville, VA MSA,
and so the BEA data describes 274 MSAs instead of 275.
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interesting is the fact that many smaller cities appear to be relatively specialized in
innovation (e.g., Corvalis, Boise, or Rochester, MN) or output, while larger cities almost
always do both. San Francisco is an obvious exception. It is the only large MSA that is
relatively specialized in innovation.

Figure 3 describes the relationship between patents and city size over time. Panel
(a) repeats panel (b) of figure 2. The relationship between patenting and city size is
always positive, but flatter as we go back in time. The slope of the regression lines in
1950 and 1900 are 1.35 and 1.11. versus 1.41 in 2010. Looking at the names of cities
that are particularly successful at innovation shows the westward march of the center of
innovations, from New England in the 19th century, to the Midwest in the 20th century,
to the West in the 21st century.
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Figure 1: Distribution of population, output and patents by city size in 1900, 1950 and
2010
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Note: (a) Share of population, patents and total output by deciles of city size and rural status for 2010.
(b) Share of population and patents by deciles of city size and rural status for 1950. (c) Same as (b) but for
1900. In each panel, black bar is population share and white bar is patent share. In panel (a) the gray bar
is output share.
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Figure 2: Joint distribution of output, patents and city size in 2010.

Albany,NY

Austin

Burlington

Madison

Minneapolis

NY

Seattle

Boise

Corvallis

Fort Collins

LA

Raleigh

Rochester,MN

Rochester,NY

San Diego

SF

14
16

18
20

22

6 11 16

(a) Output vs Pop. 2010
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(b) Patents vs Pop. 2010
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(c) Patents vs Output. 2010

Note: Each panel shows a scatter plot and OLS regression line. (a) ln(Output) vs. ln(Population) 2010;
β = 1.08, s.e. = 0.013. (b) ln(Patents) vs. ln(Population) 2010; β = 1.41, s.e. = 0.053. (c) ln(Patents)
vs. ln(Output) 2010; β = 1.29, s.e. = 0.047.
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Figure 3: Joint distribution of population and patents over time.
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(a) Patents vs Pop. 2010
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(b) Patents vs Pop. 1950
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(c) Patents vs Pop. 1900

Note: Each panel shows a scatter plot and OLS regression line. (a) ln(Patents) vs. ln(Population) 2010;
β = 1.41, s.e. = 0.053. (b) ln(Patents) vs. ln(Population) 1950; β = 1.35, s.e. = 0.046. (c) ln(Patents)
vs. ln(Population) 1900; β = 1.11, s.e. = 0.041.
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3. Urban Scale Economies for Output

We would like to calculate the total value of output for a counterfactual version of the
US in which certain cities are constrained to be smaller than they are. We treat MSAs
as the real world analog of our theoretical cities, and index them by i = 1,...,n. To
represent the non-MSA sector of the economy, we use the index i = 0. (We often abuse
language and refer to i as indexing “cities.") Yit denotes output of location i in decade
t, Lit population, Kit physical capital, ℓYit the fraction of the population engaged in the
production of output, hYit the human capital of workers engaged in producing output,
and Ait is city-level productivity in producing output. We assume that a city transforms
inputs into outputs according to

Yit = Ait (Kit)
γ
(
hYitℓ

Y
itLit

)1−γ
. (1)

We are interested in understanding how changing the size distribution of cities would
affect aggregate output. To proceed, we decompose Ait into three components. The
first is a time-specific national component common to all cities, Āt. As discussed
further below, we identify the growth of Āt over time with technological progress.
The second term is a city specific scale effect that depends on population, Ãit. This
is the agglomeration or urbanization economy so often estimated in the urban economics
literature. We refer to this term an “urban scale effect for output” to distinguish it from
a similar effect for patents. Finally, Âit is a city-decade specific idiosyncratic term. This
term reflects transitory idiosyncratic shocks to a location’s productivity. We assume that

∑i Âit = n+ 1, so that its mean value is one in each period. Altogether, we have,

Ait = ÂitĀtÃit. (2)

We assume that the urban scale effect for output depends on city population. Because
the rural sector is large and unitary, we must find some other way to assess scale effects
for the rural area. To proceed, we note that the minimum population for an MSA is
50,000, and assign rural areas the same scale effect as a city of this size, regardless of how
many people live in rural areas. To implement this, we define L̃ as the population that is
relevant for urban scale effects.

L̃it =

{
Lit for i > 0 (MSAs)
L for i = 0 (rural areas).

(3)

For MSAs, L̃ is the same as population, but for the aggregate rural area we cap urban
scale effects at the level of the smallest MSA, that is, at L = 50,000. As a practical
matter, the size of the rural population is invariant across all of the counterfactuals we
conduct in the body of the paper, and so this assumption will not affect our main results.
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This assumption is required in Appendix A, however, and introducing it here allows
consistent notation throughout.

Using this notation, we specify the scale effect as

Ãit = L̃σA
it (4)

We discuss the values we use for the parameter σA later in this section. Combining
equations (1), (2), and (4) results in a production technology that nests production
functions commonly used to study systems of cities, e.g., Desmet and Rossi-Hansberg
(2013), Duranton and Puga (2023).

We assume that physical capital is freely mobile among cities and that this equalizes
its marginal product. This implies that,

Yit
Kit

=
Yt
Kt

∀i (5)

Substituting (5) into the production function (1) and rearranging, we have

Yit = A
1/(1−γ)
it

(
Kt

Yt

)γ/(1−γ)

hYitℓ
Y
itLit (6)

Summing over all cities, we get aggregate output,

Yt =

(
Kt

Yt

)γ/1−γ

∑
i

A
1/(1−γ)
it hYitℓ

Y
itLit. (7)

We would like to compare the observed, or “base” case, to an alternative where some
cities take counterfactual sizes. When necessary, we indicate the value of variable X in
the two cases with superscripts, Xbase and Xalt.

We assume that the aggregate ratio of capital to output, K/Y , does not differ between
the two cases at a point in time. The simplest justification for holding the K/Y ratio
fixed is if the country is open to the world capital market with the interest rate not
varying across scenarios. Alternatively, Romer (2012) shows that if capital accumulates
via a fixed investment rate (as in Solow (1957)) then the capital to output ratio is constant
along any balanced growth path.4 Empirically, Feenstra et al. (2015) show that across
countries capital-output ratios do not vary systematically with income. Similarly Jones
and Vollrath (2020) show the relative constancy of this ratio over time within countries
that are arguably close to their balanced growth paths.

4If differences between our scenarios were purely in terms of the level of productivity but not its growth
rate, this condition would hold. However, in later sections, we will allow for reduced agglomeration
to affect the growth rate of aggregate productivity, and so the condition is no longer exact. If limiting
agglomeration slowed technological progress, then the K/Y ratio would rise, partially offsetting the effect
of slower productivity growth on the level of output. Thus differences in output between the baseline and
alternative cases, which we find to be small under our assumption of fixed K/Y , would be even smaller if
we did not make that assumption.
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Assuming a fixed K/Y ratio allows us to incorporate “induced capital accumulation"
(Klenow and Rodriguez-Clare, 1997, Hall and Jones, 1999): we expect that a change in
city level productivity to affect the level of income, and hence the quantity of investment.
This change in investment then feeds back to affect output.

We restrict attention to alternative cases where a city’s population is unchanged but
the size of the urban scale effect on productivity (Ãit) is reduced to that of a smaller city.
All other characteristics of the city, hit, ℓYit , and the city-decade component of productivity,
Âit, remain constant. We can also imagine this occurring if the observed population of the

city Lbase
it is divided into Lbase

it
Lmax

daughter cities, each with population Lmax, with human
capital equally divided among them, and with all of the daughter cities having the same
values of Âit and ℓYit as the original city. We assume that non-metropolitan output does
not change between base and alternative cases.

Because congestion effects are not part of the production process of equation (1), and
because production in the absence of the agglomeration effect is CRS, perfect mobility of
all factors of production would lead to an equilibrium in which all production took place
in the city with the highest value of Âit. We are thus implicitly considering equilibrium
population levels that are partly determined by an unspecified congestion process.

With these assumptions in place, we can use equation (7) to compare aggregate output
in economies with different values of Ait. Multiplying each term in the sum on the right

hand side of (7) by
(
Abase
it

Abase
it

)1/(1−γ)
and using equation (7) again to simplify, we have

Y alt
t = ∑

i

Y base
it

(
Aalt
it

Abase
it

)1/(1−γ)

.

Dividing by Y base
t gives

Y alt
t

Y base
t

= ∑
i

Y base
it

Y base
t

(
Aalt
it

Abase
it

)1/(1−γ)

. (8)

We would like to evaluate the effect on the output of a particular city of constraining
its productivity to the that of a city of size no greater than Lmax. Because city size enters
a city’s TFP, Ait, only through the static scale effect of equation (4), the ratio of observed
to counterfactual city productivity is,

Aalt
it

Abase
it

= min

(
1,
(
Lmax

L̃it

)σA
)

. (9)

Using equation (9) and (8) together, we can evaluate aggregate output for a counter-
factual system of cities in which all cities with population about the threshold level Lmax

have their productivity reduced to that of a city of the threshold size. The resulting
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change in aggregate output is,

Y alt
t

Y base
t

= ∑
i

Y base
it

Y base
t

min

(
1,
(
Lmax

L̃it

)σA/(1−γ)
)

(10)

In equation (10) we see the advantage of restricting attention to our particular coun-
terfactuals. For these counterfactuals we can evaluate the change in aggregate output
without measures of city-specific physical and human capital or of the other parts of city
productivity term, Âit and Āt. We require only city population and output.5

A Human Capital Extension

The fact that output per capita is higher in big cities, as we see in figure 2(a), is a robust
finding of the empirical literature on agglomeration economies. A more difficult question
has been estimating the share of the raw correlation that should be attributed urban scale
effects vs. the share due to the sorting of more productive people into bigger cities.

The initial approach to this problem was to estimate the relationship between city
size and wages conditional on individual characteristics, e.g., Combes et al. (2008) or
Glaeser and Gottlieb (2008). Including individual characteristics typically reduces the
wage elasticity of city size by one third to one half, and the resulting conditional elasticity
is interpreted as the causal effect of city size on the level of productivity.

Following Glaeser and Maré (2001), recent research (De la Roca and Puga, 2017,
Duranton and Puga, 2023) follows workers over time and finds that the productivity
of a worker increases more rapidly in bigger cities. An effort to account for differences in
worker productivity across cities suggests that most of the difference can be accounted
for by an increase in the rate of worker productivity growth as city size rises.

Summing up, the older literature asks whether urban workers are more productive
because they are different than other workers when they arrive in the city, while the more
recent literature asks whether urban workers are more productive because they become
different from other workers after they arrive in the city. While the conceptual difference
is clear, distinguishing the two cases empirically is obviously tricky, and research on the
question is in its early stages. With that said, the evidence in De la Roca and Puga (2017)
and Duranton and Puga (2023) suggests that most differences in worker productivity
arise after people arrive in the city, not before. This implies that the relationship between
output and city size that we see in the raw data, e.g., Figure 2, is actually close to the

5Estimates of city-specific productivity, Âit, for example, face a series of econometric problems. Does
a particular city produce high output relative to its measured human capital because it has a high
idiosyncratic productivity due to location or institutions, or because we do not properly measure the
quality of human capital? This problem will recur in our analysis of city level research productivity. These
problems are carefully described in Combes et al. (2010) and Glaeser and Gottlieb (2008).
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causal effect of city size on output, but that the city size effect operates both through
an effect on TFP and through an effect on human capital. We here extend our model to
include both of these effects.

We assume that human capital is a function of city-decade specific inputs (years of
education and their quality), which we denote Sit. We further allow the Mincerian return
to these inputs, denoted ϕit to vary at the city-decade level. Finally, we allow an urban
scale effect similar to the one for producing output, represented by the parameter σH :

hYit = exp(ϕitSit)L̃
σH
it , (11)

Next, we use equation (7) to write aggregate output for a counterfactual case where
city size is capped at Lmax and multiply the right hand side by(

Abase
it

Abase
it

)1/(1−γ)
hY ,base
it

hY ,base
it

. (12)

Following the same logic that leads from equation (7) to (10), we arrive at the correspond-
ing expression for aggregate output when human capital production is subject to scale
effects,

Y alt
t

Y base
t

= ∑
i

Y base
it

Y base
t

min

(
1,
(
Lmax

L̃it

) σA
1−γ+σH

)
(13)

Comparing equation (13) to equation (10), we see that the two expressions are identical
save for the interpretation and magnitude of the exponent on the term

(
Lmax

L̃it

)
. Therefore,

for the purpose of evaluating counterfactual scenarios, we evaluate the model with or
without scale effects in the production of human capital by varying the magnitude and
interpretation of this exponent.6

B Parameterization

Given the data already in hand, evaluating equation (13) requires only that we evaluate
σA

1−γ + σH . We follow the standard in the growth literature and set the capital share of
output, γ, to 0.33. To evaluate σA and σH , we rely on the large literature estimating the
relationship between city size and productivity. Table 1 lists estimates of these parameters
derived from six prominent empirical papers.

6Our description of the effect of city size on human capital simplifies the problem by assuming that
human capital accumulated in a city can never migrate to another city. A better, but much less tractable,
description of the process would allow people to accumulate human capital in one city and employ it in
another. Implementing such a model would require vastly more data than the exercise we conduct. A
tractable alternative to our approach would be to allow human capital to be freely mobile across cities
in parallel to physical capital. In this case, rather that being “too attached” to the cities where it is
accumulated, human capital is “too unattached” to the people who accumulate it.
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Ciccone and Hall (1996) is an early effort to estimate urban scale effects and, like
us, explicitly accounts for both physical and human capital. Although their estimation
strategy is indirect, the parameters that Ciccone and Hall (1996) estimate correspond
closely to ours. Their benchmark estimate implies that σA = 3.4% and that σH is
indistinguishable from zero.7 These values together imply σA

1−γ + σH = 5.1%.
Most other efforts to estimate urban scale effects rely on regressions of the logarithm

of wages or output on city size. To use these estimates for our purpose, note that from
(8) we can derive the relationship between city size and output as,

∂ logYit
∂ logLit

= 1 +
σA

1 − γ
. (14)

If we make the further assumption that wages reflect the marginal productivity of labor,
then we can also derive the relationship between city size and wages,

∂ logwit

∂ logLit
=

σA
1 − γ

. (15)

The left hand side expressions in both of these equations are quantities that can
be measured empirically and are the subject of much of the empirical literature on
agglomeration effects. To estimate either ∂ logYit

∂ logLit
or ∂ logwit

∂ logLit
, one must distinguish between

the quantity of interest, the pure effect of scale, and several potential confounders: the
propensity of more productive people to sort into cities, the possibility that people accu-
mulate human capital more quickly in cities, and the possibility that people accumulate
at places that are intrinsically more productive. The literature has proposed a variety of
solutions to these problems (see Rosenthal and Strange (2004) and Combes and Gobillon
(2015) for surveys).8

Each of Combes et al. (2008), De la Roca and Puga (2017) and Duranton and Puga
(2023) relies on a panel of individual workers to examine the relationship between wages
and city size. In French data, Combes et al. (2008) find that the city size elasticity of
wages is about 5.1%. After controlling for individual fixed effects, this drops to about
3.7%. Combes et al. (2008) implicitly assume that worker characteristics are unaffected
by the size of the city where they work, and using equation (15) their estimates imply
σA = 2.5%,σH = 0 and that σA

1−γ + σH = 3.7%

7Using their benchmark estimate of θ̂ = 1.052 (from Table 1) in their equation (20) and our assumption
that the capital share is 0.33, we have that (their notation) γ = 1.034. Inspection of their equation
(3) confirms that this parameter corresponds to our σA. Similarly, the benchmark estimate of η is not
distinguishable from zero, and inspection of their equation (3) confirms that this parameter corresponds to
our σH .

8We note that the literature is generally careful to distinguish between the effects of city size and city
density. To simplify our analysis, as is common in much of the theoretical literature, we abstract from this
distinction and treat the two concepts as interchangeable.
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Table 1: Estimates of σA
σA σH

σA
1−γ + σH Source Data

3.4% ∼ 0 5.1% Ciccone and Hall (1996) US, State output, 1988
2.5% ≡ 0 3.7% Combes et al. (2008) French, Ind. wages, 1976-98
1.5% 2.9% 5.1% De la Roca and Puga (2017) Spanish, Ind. wages, 2004-9
2.9% 3.1% 7.6% Duranton and Puga (2023) US, Ind. wages, ca. 1979-2020
2.7% ≡ 0 4.1% Glaeser and Gottlieb (2008) US, Ind. wages, 2000
8.6% ≡ 0 13% Glaeser and Gottlieb (2009) US, MSA output, 2000

Note: Various estimates of the static scale effect, σA and the human capital scale effect, σH from the
literature. “≡ 0" indicates a quantity implicitly assumed to be zero.

Using Spanish data, De la Roca and Puga (2017) conduct a similar exercise and find
that the city size elasticity of wages is about 5.1%. After controlling for individual fixed
effects, this drops to about 2.2%. Unlike, Combes et al. (2008), however, De la Roca
and Puga (2017) attribute the 2.9% difference to more rapid accumulation of human
capital in larger cities rather than sorting. Again using (15), these estimates suggest
σA = 1.5%, σH = 2.9%, and σA

1−γ + σH = 5.1% Duranton and Puga (2023) replicate De la
Roca and Puga (2017) for the panel of US workers described by the NLSY79 and find
that the city size elasticity of wages is about 7.6%. This drops to 4.4% after controlling
for individual fixed effects, with the 3.1% difference attributed to more rapid human
capital accumulation in larger cities. These estimates suggest σA = 2.9%, σH = 3.1%, and
σA

1−γ + σH = 7.6%.
The individual level data employed in Combes et al. (2008), De la Roca and Puga

(2017) and Duranton and Puga (2023) allows state of the art decomposition of scale effects
into human capital/sorting and pure scale effects. However, these papers are based on
French, Spanish and the highly selected NLSY sample of US workers. The final two
papers in table 1 are based on representative samples of US data. Glaeser and Gottlieb
(2008) look at the relationship between wages and city size using a large cross-section
of US workers. They estimate that the city size elasticity of wages is about 4.1%. These
estimates suggest σA = 2.7%, σH = 0, and σA

1−γ + σH = 4.1%.
Glaeser and Gottlieb (2009) estimate the relationship between city level output and

population using data on US cities in 2000, finding that city size elasticity of output is
about 13%. This estimate does not correct for the possibility of sorting or more rapid
urban human capital accumulation in cities. These estimates suggest σA = 8.6%, σH = 0,
and σA

1−γ + σH = 13.0%.
The estimates of σA

1−γ + σH presented in table 1 range from about just under 4% to 13%.
However, four of the six estimates are within about 1% of the bottom end of this range.
Given this, our preferred value of σA

1−γ + σH for our calculations is 4%. With that said,
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Table 2: Output in 2010 for two counterfactual size caps and values of σA.
σA

1−γ + σH Lmax = 1m Lmax = 100k
0.04 0.94 0.84
0.08 0.88 0.72
0.12 0.83 0.62

Note: Each cell reports output relative to the baseline for a particular cap on city size and value of the
exponent in equation (13). For the purpose of this calculation, the rural population is treated as an extra
MSA whose output is constant across scenarios and the capital share of output, γ, is equal to 0.33.

given that there is still some variation around this estimate, we also consider 8% and 12%
in our calculations.

To evaluate equation (13) we use the data on city level output and population de-
scribed above. We evaluate the static effect of agglomeration for data from the year
2010, considering two possible values of maximum city size, Lmax: 1,000,000 and 100,000.
Note that even our mildest comparative static, capping city size at 1,000,000 involves
a catastrophic reorganization of the economy. The smallest US city with a population
above 1m in 2010 was Fresno CA, the 52nd largest MSA in country. In 2010 the largest
52 cities housed 58% of the population and produced 66% of output. A cap of 100,000

would require reorganizing 261 MSAs.

4. Urban Scale Economies for Patents

The analysis in Section 3 takes the city invariant component of productivity, Āt, as
given. Changes in this parameter over time reflect technological progress, which we now
examine. We proceed in three steps. First, we consider the relationship between city size
and the production of patents. Second, we consider the relationship between patents
and effective research effort, a term that we define more precisely below. Combining
the first two steps we can investigate the relationship between city sizes and effective
research effort, decade by decade. Finally, we consider the relationship between effective
research effort and changes in Āt. The first of these three steps is taken in this section,
while the second and third are in Section 5. Putting the three steps together, we describe
the relationship between the distribution of city sizes and the speed of technological
progress.

Our analysis of the relationship between city sizes and patents parallels the treatment
of the relationship between city sizes and output. The number of patents produced
in a city-decade, Pit, depends on the size of the research labor force (specifically, city
population multiplied by the share of people working in R&D, ℓRit), the human capital
of those research workers, hRit , and a city-decade patent productivity multiplier, Bit,
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according to the function,9

Pit = Bith
R
itℓ

R
itLit. (16)

Summing over cities within a year, we have aggregate patent production,

Pt = ∑
i

Bith
R
itℓ

R
itLit. (17)

City-decade patent productivity can be decomposed into three components: a time
specific national component common to all cities, B̄t; a city specific agglomeration effect
that depends on population, B̃it; and, a city-decade specific idiosyncratic term, B̂it. More
formally,

Bit = B̂itB̄tB̃it. (18)

We model the scale effect in producing patents in the same way we did for output, but
with a different value of returns to scale parameter,

B̃it = L̃σB
it . (19)

We do not restrict the relationship between city-specific output productivity (the Âit’s)
and city-specific patent productivity (the B̂it’s). Places can be good at one but not the
other. Nor do we restrict the relationship between the quality of human capital used to
produce output, hYit and that used to produce patents, hRit . Two cities may have the same
numbers of Ph.D.s working in production but different numbers of Ph.D.s working in
research.

As in the previous section, we consider the thought experiment where the urban
scale effect on research productivity, B̃it, take the value that would hold if the city were
constrained to maximum size Lmax. To evaluate the resulting change in counterfactual
patent production, we use the same approach that as in our analysis of counterfactual
output, adjusting for the fact absence of capital. To proceed, first use (17) to write
aggregate research output for the counterfactual case. Second, multiply the right hand

side by Bbase
it

Bbase
it

. Third, rearrange and use equations (18) and (19) to get

P alt
t = ∑

i

P base
it min

(
1,
(
Lmax

L̃it

)σB
)

. (20)

Finally, divide both sides by P base
t to get

P alt
t

P base
t

= ∑
i

P base
it

P base
t

min

(
1,
(
Lmax

L̃it

)σB
)

. (21)

9To simplify the model, we assume that physical capital is not used for the production of research
output.
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In words, equation (21) allows us to calculate the level of patenting under a counterfactual
system of cities from observed city and national patenting, observed city populations,
and assumed counterfactual city populations.

In fact, equation (21) describes the largest possible change that could result from a
change to city sizes. To see this, consider the case in which there is a city of two million
people, of whom 20,000 are engaged in research. It seems likely (see next section) that
agglomeration effects in research depend on the number of other researchers in a city,
rather than the number of people overall. This means that one could imagine splitting the
parent city into two daughter cities, each with one million people, but with one daughter
city containing all 20,000 researchers. In that case, patent production would not fall at all.
By dividing up the resources devoted to research proportionally with population, as in
equation (21), we maximize the effect of reductions in city size on the output of patents.

A Parameterization

The key parameter required for the calculation in equation (21) is σB , the effect of city
size on patent production. A large literature establishes that, for people working in
knowledge intensive activities, proximity to other people working in similar industries
has important effects on productivity, and also that the benefits of proximity fall off
rapidly with distance. For example, Arzaghi and Henderson (2008) show that a few
hundred meters of distance from an incumbent firm has a large impact in the location
choice of an entrant, while Atkin et al. (2022) shows the importance of face-to-face contact
for patent citations. Similarly, Carlino and Kerr (2015) use results in Rosenthal and
Strange (2003) to calculate that the benefits of proximity decrease about five times more
quickly with distance for software production than for metal fabrication. There is also
evidence that inventive or innovative activity is much more likely to cluster together than
it would if firms chose locations at random, e.g. Inoue et al. (2019). For a useful survey of
both literatures, see Carlino and Kerr (2015) and Kerr and Kominers (2015). These papers
strongly suggest the existence of scale effects and suggest that they are more important
for innovation and invention than for most other types of economic activity, but they are
less helpful for thinking about how scale effects vary with the size of a city.

Carlino et al. (2007) applies more directly to our case. This paper estimates a cross-
sectional regression of patents per person on employment density in US MSAs around
2000. They they estimate that the elasticity of patents per person to employment density
is 17-20%. Finally, Moretti (2021), constructs a panel of US inventors and their patenting
activity by year, sector, and BEA economic area (slightly larger than an MSA). Controlling
for inventor fixed effects, this paper estimates that the elasticity of inventions per inventor
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Table 3: Patents during 2000-9 for three counterfactual size caps and values of σB .
σB Lmax = 1m Lmax = 100k

0.06 0.93 0.83
0.20 0.82 0.58

Note: Each cell reports the share of total patents during 2000-2009 relative totals reported in the CUSP
data ((Berkes, 2018)), for a particular cap on city size and value of σB . For the purpose of this calculation,
the rural population is treated as an extra MSA whose patents are constant across scenarios.

with respect to the number of inventors in a sector-cluster is 5% to 9%, depending on
specification, with a preferred estimate around 6%.

Summing up, patenting seems to increase with city size at least as rapidly as does
output or wages, and probably more quickly. Moretti (2021) is the only estimate based
on disaggregated panel data, and suggests values of σB ∈ [0.05,0.09]. Carlino et al. (2007)
uses only cross-sectional data, and so is less able to address reverse causation and sorting
than Moretti (2021), but suggests σB ∈ [0.17,0.20].

For our baseline calculation, we rely on the Moretti (2021) estimate of σB = 6% because
it is based on higher quality data and and an econometric strategy that is better able to
control for unobservable attributes of people and cities. With this said, consistent with
the estimates from Carlino et al. (2007), we also consider the much larger value σB = 20%.

Table 3 shows national patent production for 2000-9 in the alternative case where cities
are limited in size relative to the observed case. We consider a range of values of Lmax as
in table 2. When scale economies in patenting are set at our base-case value of σB = .06
and we cap city size at one million, patent output falls by only 7% relative to baseline.
This magnitude is similar the static urban scale effect on output production shown in
table 2 for a similar value of σA. We find this surprising. Because patenting is more
concentrated in larger cities than output, we expected that restricting city size would
be more harmful to patenting than to output. In fact, this intuition appears not to be
economically important. Larger declines in aggregate patenting are possible, but require
the catastrophic counterfactual changes associated with Lmax equal to 100,000, or the
Carlino et al. (2007) value of σB estimated on cross-sectional data rather than than the
smaller value derived from panel data. In the most extreme case, where we consider the
largest plausible value of σB and cap city size at 100,000, patenting falls by 42%.

We can also examine the evolution of patenting over time. For this purpose, we restrict
attention to our baseline value of σB = 0.06 and calculate how patenting changes in each
of our two counterfactual systems of cities. Figure 4 presents our results. As one would
expect, restricting city size to a fixed level would have had a much smaller effect on
patenting early in the 20th century, when cities were much smaller.
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Figure 4: Share of total patents produced under two hypothetical city networks
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Note: Counterfactual patents as a fraction of actual patents reported in CUSP when city sizes are capped
at 1m (diamonds) and 100k (squares). Calculations assume σB = 0.06.

5. From Patents to the Level of Technology

The previous section analyzes how patenting in every decade would have differed from
its observed value in a counterfactual scenario where city sizes were restricted. We
now ask how such a restriction would affect the 2010 level of the time-specific national
component of productivity, Āt, which we identify as the level of technology. More
specifically, we can observe in the data actual path of technology (Ābase

1900, ...Ābase
2010), and we

assume that that the levels of technology in the base and alternative cases are the same
in 1900. Our goal is to construct the post-1900 path for Āalt. On the alternative path,
restricted city sizes would have led to less patenting and slower technological progress.

Our starting point is the framework relating research and technological progress laid
out in Bloom et al. (2020). The key equation is

Ȧ(t)

A(t)
= αS(t)λA(t)−β . (22)

Here, S(t) is research effort and A(t) is the level of technology, both in continuous time.
In their application to the aggregate US economy, S(t) is gross domestic investment in

intellectual property products from the National Income and Product Accounts deflated,
by a measure of the nominal wage for high-skilled workers. The parameter λ captures
the “stepping on toes” effect, whereby a the rate of technological progress may not scale
linearly with research effort. The parameter β captures the extent to which ideas become
harder to find as more of them have been discovered, the “fishing out effect”.
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We make two changes to this framework. First, we allow for the input to techno-
logical progress to depend not only on research spending, but also on the degree of
agglomeration. Specifically, we define Rt as effective research effort, which is St adjusted
for agglomeration effects in the cities where research takes place. The level of Rt will
differ between the base and alternative cases because of limitations on city size. The
second change we make is to allow for a time-varying term ηt, in the equation that relates
effective research effort and technological progress. This change allows us to solve for an
implicit level of effective research effort from the observed time series for productivity.

Making these two changes, and switching to discrete time, equation (22) becomes

∆Āt/Āt = αηtR
λ
t Ā

−β
t , (23)

and manipulating slightly,

Ābase
t = Ābase

t−1 +
[
αηt−1(R

base
t−1 )

λ
]
(Ābase

t−1 )
1−β (24)

Using this equation, and data on Ā by decade, we solve for a series for αηt(Rbase
t )λ.

To construct the counterfactual series for effective research effort in the case where
city sizes were restricted, Ralt

t , we use the machinery relating patents to city sizes from
Section 4. Specifically, we use the ratio of P alt/P base for every decade that was presented
in Figure 4. In mapping from this change in patents to a change in effective research
effort, we face two immediate obstacles. First, the relationship between research effort
and patenting is not constant over time. For example, between 1910 and 1960, the pace of
patent filings by US residents was roughly constant at around 30,000 per year, while the
effective number of researchers increased by a factor of more than eight (Berkes, 2018,
Bloom et al., 2020). Second, the relationship between patents, on the one hand, and
technological progress, on the other, is not stable in either levels or growth rates. For
example, the number of patent granted in the US increased more than five-fold between
1980 and 2020, having less than doubled in the previous four decades, but there was no
corresponding jump in the rate of TFP growth (USPTO, 2024).

To overcome the first of these obstacles, we assume that the amount of effective
research effort required to produce a patent is constant only within a decade, that is:

Pit = µtRit, (25)

where µt describes the time varying proportionality between effective research effort and
patents.

The second of these problems is overcome via the time-varying term ηt in equation
(23) that relates effective research effort and technological progress.
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Under these two assumptions,

αηtR
alt
t

αηtRbase
t

=

(
P alt
t

P base
t

)λ

(26)

The resulting values of αηt(Ralt
t )λ can then be accumulated forward using the differ-

ence equation,

Āalt
t = Āalt

t−1 +
[
αηt−1(R

alt
t−1)

λ
]
(Āalt

t−1)
1−β . (27)

This yields the desired path of A under the alternative case, and in particular its value in
2010, Āalt

2010.
Implementing this process requires values for the two key parameters describing the

process of technological progress in equation (23). In their baseline case, Bloom et al.
(2020) assume λ = 1, so that the stepping on toes effect does not operate. Under this
assumption, they estimate that β = 3.1 As an alternative they consider λ = 3/4. In
this case, they estimate that β = 2.4 In the analysis that follows, we use both pairs of
parameterizations. In addition, we also consider a “naive” parameterization of λ = 1, β =

0, where both the stepping on toes effect and the negative effect of current technology on
the ease of finding new technologies are absent. Our measure of the level of technology
in the base case, Ābase is constructed based on estimates of decadal TFP growth from
Bloom et al. (2020) and Gordon (2016).10

Two issues regarding our calculations require further discussion. First is that the
estimates of TFP growth used by Bloom et al. and Gordon, reflect not only technological
progress, which is what Ā is supposed to be, but also the static urban scale effect
discussed in Section 3. In the presence of static urban scale effects, the growth of cities
will cause a standard measure of TFP to overstate the speed of technological progress.
We elaborate in Appendix A. Under mildly restrictive assumptions we construct a series
for technological progress that corrects observed TFP for the growth rate of urban scale
effects. This correction is small for the period 1900-2010, in the range of one-tenth of a
percent per year. We could easily use this adjusted series as our measure of Āt. However,
to simplify our exposition and to maintain comparability with other literature, we instead
equate observed TFP growth with technological progress.

The second issue is how to think about technological progress in the rest of the world.
In practice, ideas cross borders easily, and so if a reduction in city size had led to less new
technology being invented in the US, this deficiency would have largely been made up

10Specifically the data are taken from the file AggregateBLSIPP.m in the replication package of Bloom
et al. (2020). Their data for the period after 1950 comes from the Bureau of Labor Statistics Private Business
Sector multifactor productivity growth series, adding back in the contributions from R&D and IPP. Their
data for prior to 1950 come from Gordon (2016)
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by innovation from abroad. To address this issue we could impose the same restrictions
on global city sizes as we impose in the US. Using global data on city populations and
research output, we could then perform an analysis of the effect of this size restriction.
Unfortunately, data on city research effort at the global level are not available. As the
best practical alternative to an analysis of the entire world, we assume that technological
progress in the US results entirely from US research effort.

Figure 5 shows our results. Each panel reports the ratio of Āalt
t /Ābase

t in the counter-
factual cases where city populations are restricted to one million or 100,000. The three
panels differ from each other in parameters that govern the relationship between effective
research effort and TFP. Figure 5(a) and (b) use the two sets of parameters considered by
Bloom et al. (2020), (λ = 1, β = 3.1) and (λ = .75, β = 2.4). Figure 5(c) we considers
a “naive" parameterization of λ = 1, β = 0, where the stepping on toes effect and the
negative effect of current technology on the ease of finding new technologies are both
absent.

As the figure shows, the cumulative effect of reduced research output has a small
effect on the level of productivity for 2010 under either of the parameterizations used
by Bloom et al. (2020). If we restrict attention to the empirically relevant cases where
λ = 0.75, β = 2.4 or λ = 1, β = 3.1, then when σB = 0.06 and city size is limited to one
million, Ā in 2020 is only about two percent lower than the baseline in both alternative
cases. When we restrict city size to 100,000, the impact is still less than 6%. This seems
somewhat puzzling, given that Figure 4 shows that research output in the counterfactual
cases is between 5% and 20% lower than in the base case, depending on which scenario
one is looking at, for all of the decades of the twentieth century.

The resolution to this puzzle is exactly the negative effect of the technology level
Ā on the speed of technological progress. Less effective research effort early in the
century leads to a lower level of Ā, which in turn makes research later in the century
more productive at generating technological progress than in the base case. Consistent
with this intuition, the bottom panel of Figure 5 illustrates the results of a “naive"
parameterization where λ = 1 and β = 0 and each successive unit of research effort
yields the same increment to the level of technology. In this case, if city size is restricted
to one million, Ā in 2020 is 8% below its baseline level, while if city size is restricted to
100,000, the reduction is about one fifth.

All of the calculations in Figure 5 are based on our preferred value of σB (the urban
scale effect in R&D) of 6%. Table 4 shows the sensitivity of our results to the alternative
value of 20% discussed above. We focus on the case where city size in the alternative
scenario is limited to one million, and consider the same combinations of λ and β that
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Figure 5: Counterfactual trajectories of national productivity.
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Note: Ratio of counterfactual to observed productivity, Āalt
t /Ābase

t , by decade for three different
counterfactuals. City sizes are capped at 1m (squares) and 100k (diamonds). Panels differ in assumptions
about the relationship between research output and productivity growth; (a) λ = 0.75,β = 2.4, (b)
λ = 1,β = 3.1, (c)λ = 1,β = 0. We assume σB = 0.06 and σA = 0.08.
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Table 4: Āalt/Ābase for Lmax = 1,000,000
Parameters σB = .06 σB = .20

λ = 1 and β = 3.1 0.979 0.935
λ = .75 and β = 2.4 0.980 0.939
λ = 1 and β = 0 0.924 0.790

Note: Each cell reports Āalt
t /Ābase

t for 2010 when maximum city size is limited to one million and
σA = 0.8.

we consider in Figure 5. To the extent that this effect is relatively small under our baseline
parameterization, it would take a very large adjustment of σB to produce a large negative
effect on productivity.

6. Combining Static and Dynamic Effects

We can now consider the combined effects of reduced aggregate productivity due to
slower technological progress (Āt) and lower static productivity from urban scale effects
(the Ãits) that would result from a limitation on city sizes. Combining equations (1), (2),
(10) and (27) we can write the total change in counterfactual output due to both the types
of urban scale effects,

Y alt
t

Y base
t

=

(
Āalt
t

Ābase
t

)1/(1−γ)

∑
i

Y base
it

Y base
t

min

(
1,
(
Lmax

L̃it

) σA
1−γ+σH

)
(28)

Performing the calculation described by equation (28), Table 5 shows output in the
alternative case where city size is limited to one million relative to the base case of actual
city sizes. We show values for all of the combinations of parameters that we consider
above.

For the base-case set of parameters, i.e. σA
1−γ + σH = 0.04, σB = .06, and Bloom et al.’s

preferred values, output in the alternative case is 8% lower if city sizes are restricted to
on million. If we pick values for scale effect parameters at the upper end of the plausible
range, σA

1−γ + σH = 0.12 and σB = 0.20, then the reduction in output is 22%. Given the
importance often assigned to large cities as drivers of economic growth, these strike us
as relatively small effects. For example, on the basis of PPP data from 2022, Canada’s
per capita GDP is 20% below the US, about the same as in the counter factual case just
considered.

The results in Table 5 can also be transformed to describe the growth rate of output
rather than its level. Recall that the experiment we are consider imposes a cap on city
sizes starting in 1900 – the point in time when our baseline and alternative scenarios
diverge. Using data from the Maddison Project, GDP per capita in the United States
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Table 5: Output Relative to Baseline 2010
σB = 0.06 σB = 0.20

σA
1−γ + σH 0.04 0.08 0.12 0.04 0.08 0.12

λ = 1.00, β = 3.1 0.917 0.863 0.816 0.877 0.825 0.780
λ = 0.75, β = 2.4 0.919 0.865 0.817 0.880 0.829 0.783

λ = 1, β = 0 0.866 0.815 0.770 0.741 0.697 0.658

Note: Counterfactual output as a share of realized output in 2010 when counterfactual city size is capped
at 1m for different parameter values, Cells in this table are calculated by multiplying the appropriate entries
of tables 2 and 4.

increased by a factor of 6.1 between 1900 and 2010, corresponding to an annual growth
rate of 1.66%. If output in the year 2010 had been 92% of its observed value, correspond-
ing to our base-case parameters, then annual growth would have been 1.58%. Using the
parameters representing the upper end of plausible scale effects, the annual growth rate
would instead have been 1.43%.

Comparing the last line of Table 5 with the two above shows the importance of the
fishing out effect in the Bloom et al. production function for technology. When we turn
this effect off by setting β = 0, the decline in output is between 25% and 110% larger.
(The relative importance of the fishing-out effect is largest when σA is small, so that
static scale effect are not important and similarly when σB is large, so that scale effects
on research productivity are large.)

What could be missing from our analysis that would make the effect of limiting urban
scale larger? It is possible that we have simply used incorrect estimates of the scale effects
that we include in our model. An alternative is that there are effects of urban scale, either
static or dynamic, that we have failed to account for entirely. We can think of several such
possibilities.

It may be that there are effects of large cities on human capital that go beyond the
effect on wages of individuals who live in or move to those cities. For example, if having
New York as a very large city makes everyone in the country have higher human capital,
this would be an additional effect. Importantly, we do include in our analysis the channel
by which New York being a big city affects production of new technology, as proxied by
patents. So this would have to be a different type of knowledge production.

A second possibility is that big cities are important, not because of high population
per-se, but because having a city be very populous allows a lot of people to take advantage
of a particularly good location. This channel is ruled out in the approach we take.
Specifically, we assume that the location-time specific component of productivity, Âit

that each person experiences is the same in the baseline and alternative cases. Indeed,
because of difficulties in measurement, we don’t even try to estimate how Âit is related
to city size. However, if one took this view, the conclusion would be that big cities are
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important for growth only because the number of intrinsically good places to locate a
city is limited, contradicting the spirit of much of the literature on agglomeration.

A related possibility is that the existence of large cities allows for higher mobility in
response to transitory productivity shocks than would be present in the counterfactual
case of more smaller cities. For example, if a particular location has a very good
productivity shock, many more people can move there in a world of unrestricted city
sizes than in a world where sizes are limited.

Finally, it is worth pointing out that our analysis is explicitly about the importance
of big cities, rather than urbanization in general. Our alternative scenario maintains the
same non-urban share of the population as is observed in the baseline.

7. Conclusion

To assess the effect of agglomeration economies on economic growth in the United States,
we consider the effect of counterfactual restrictions on city size over the period from 1900

to 2010 on GDP per capita in the year 2010. We allow for both a static effect of city size on
productivity and a dynamic effect of city size on research output, which then accumulates
over time to determine the level of productive technology.

We conclude that the effects of restricting city size are surprisingly small – or put dif-
ferently, that there is surprisingly little benefit from agglomeration. To give an example,
consider the case in which city size is limited to one million people. In this case, holding
the level of technology constant and using our standard set of parameters, we estimate
that the loss of the static productivity effect reduces output in 2010 to 94% of its baseline
level. In addition, over the 110 year period that we consider, the compounded effect of
restricting city size is to reduce the level of technology by 2%, to 98% of its baseline level.
Multiplying these effects, 2010 output in the case with limited agglomeration would have
been 8% lower than the baseline, and the 1900-2010 GDP growth rate in the alternative
scenario would have been less than a tenth of a percentage point lower than the baseline
(i.e. 1.58% vs. 1.66%). While this is certainly not a trivial effect, it suggests to us that the
urban scale effect was not the primary engine of economic growth.

As with any quantitative conclusion, there are many possible reasons why ours could
be wrong. One possibility is that we have incorrectly parameterized either the scale effect
of city size on productivity or the similar scale effect on research. But moving to the very
highest end of the range of parameters estimated in the literature does not reverse our
finding.

A second possibility is that there are effects of urban scale, either static or dynamic,
that we have failed to account for. In the previous section we discussed some of these in
detail.
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A third possibility is that in examining our particular counterfactual, we have done
violence to what people mean when they say that cities are engines of growth. Concretely,
we assume the only economic effect of limiting city sizes would be via the urban scale
effect. A skeptic might point out that if city sizes were limited, there would have to
be more cities, and that some of these cities might not have the same fundamental
productivity (the term we call Ã) as the actually observed cities. This might be due
to the new cities not being in locations that are as desirable as the cities that we actually
observe. Our answer to this particular critique is that if it is correct, it is not so much
cities themselves that are engines of economic growth, but rather good locations in which
to put cities.

A final possibility is that we are being too narrow in our interpretation of the phrase
“engine of growth." If urban scale effects explain one-tenth of US economic growth,
maybe that qualifies them as being an engine of growth.
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Appendix A. Adjusting the Level of Technology for Urban Scale

Economies in Output

This appendix pursues the issue of how taking urban scale effects into account changes
the measurement of the speed of technological progress. Literature in this area generally
proceeds by via the technique of growth accounting, whereby changes in output expected
due to observed factor accumulation are subtracted from the observed series of changes
in output to derive growth of total factor productivity (TFP). Growth of TFP is in turn
assumed to be the same as technological progress. While there are many reasons why
there might be slippage between these two concepts, we focus on the effect specific to our
paper: If cities are getting larger over time, then urban scale effects will raise measured
TFP even in the absence of technological change; or more generally, TFP growth will
overstate technological progress. Using the machinery of Section 3, we can correct this
problem.

We begin by rewriting the production function, explicitly including the determinants
of productivity. For convenience, we also define human capital used in production at the
city level as Hit = hYitℓ

Y
itLit:

Yit = ÂitĀtÃitK
γ
itH

1−γ
it (a1)

Incorporating urban scale effects, the production function can be rewritten as

Yit = ÂitĀtL̃
σA
it Kγ

itH
1−γ
it (a2)

We assume that the allocation of factors across cities satisfies

(Ki,Hi,Li) = αi(K,H ,L), for all i and αi > 0 (a3)

It follows immediately that Σiαi = n+ 1 and that αi = Li/L.
We can thus rewrite city output yet again as

Yit = ÂitĀtL̃
σA
it

Lit

Lt
KγH1−γ (a4)

Next, let A∗ be traditionally measured TFP. The conventional definition for A∗ is

A∗
t =

∑i ÂitĀtL̃
σA
it

Lit

L
KγH1−γ

(n+ 1)KγH1−γ
=

Āt

(n+ 1)Lt
∑
i

ÂitĀtL̃
σA
it Lit (a5)

This can be rewritten (recalling that ∑i Âi = n+ 1 requires that Âi = 1):,

A∗
t = Āt

Cov(Âit, L̃
σA
it Lit) + L̃σA

it Lit

Lt
(a6)
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This can be rewritten as

A∗
t = Āt

L̃σA
it Lit

Lt

[
1 +Corr(Âi,t, L̃

σA
it Lit)CV (Âit)CV (L̃σA

it Lit)
]

(a7)

where CV indicates coefficient of variation. The second term in brackets represents the
effect on aggregate productivity of the relationship between city size and the component
of city productivity that is unaffected by size. It is thus almost certainly positive.
Unfortunately, because we can’t measure city level productivity Âi, we have no way
of evaluating this term or its changes over time. In calculating technological change, we
make the assumption that this term is constant. We can thus derive a simple expression
for the relationship between TFP growth and aggregate technological change:

∆ln(Āt) = ∆ln(A∗
t )−∆ln

(
L̃σA
it Lit

L̄t

)
(a8)

Equation (a8) shows how to correct aggregate TFP growth to account for increased
scale effects over time.

Figure 6 implements equation (a8). The highest, solid black line in the figure reports
the uncorrected level of TFP, A∗. Each of the three bottom three lines reports a corrected
level of technology based on a different estimate of the strength of urban scale economies
on output, σA. Respectively, the small dashed line, dotted and large dashes describe Āt

for σA = 0.04, 0.08, and 0.12.
Unsurprisingly, the gap between the adjusted and unadjusted level of technology

grows over the course of the 20th century as cities become larger. By 2010, the adjusted
level of technology is 93%, 86% and 79% of its unadjusted level when σa is 0.04, 0.08,
and 0.12. Alternatively, from 1900 to 2010, the growth rate of the unadjusted level of
technology was 1.43% and the corresponding adjusted rates were 1.36%, 1.29%, and
1.22%. Note that these are not counterfactual calculations. These are adjustments to the
growth rate that result from accounting for changes in the importance of urban scale
effects for output.
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Figure 6: TFP and Adjusted Technology for Different Urban Scale Effects for Output

1
2

3
4

5

1900 1950 2000

Note: Figure shows raw measure of the level of TFP, A∗
t , as the highest line. Three lines below report,

from top to bottom, the adjusted level of technology, Āt, when σA = 0.04, 0.08, and 0.12.
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