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Abstract

In high-dimensional regression scenarios with low signal-to-noise ratios, we assess

the predictive performance of several prevalent machine learning algorithms. Theoreti-

cal insights show Ridge regression’s superiority in exploiting weak signals, surpassing a

zero benchmark. In contrast, Lasso fails to exceed this baseline, indicating its learning

limitations. Simulations reveal that Random Forest generally outperforms Gradient

Boosted Regression Trees when signals are weak. Moreover, Neural Networks with

ℓ2-regularization excel in capturing nonlinear functions of weak signals. Our empirical

analysis across six economic datasets suggests that the weakness of signals, not neces-

sarily the absence of sparsity, may be Lasso’s major limitation in economic predictions.
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1 Introduction

In regression analysis, covariates with non-zero coefficients are recognized as true signals,

while those with zero coefficients are considered false signals. In a population model, this

distinction is clear-cut, resembling a “black and white” scenario. However, in finite samples,

the presence of minuscule non-zero coefficients introduces a “gray” area, blurring the lines

between true and false signals.1 This gray area represents weak signals—covariates that

exert negligible influence on the outcome variable.

The investigation of weak signals holds tangible implications for economic and financial

decision-making. Often, it is the collective impact of these weak signals that drives the

outcomes in these fields. Supporting this, Figure 1 offers an empirical perspective, showcasing

R2 values gathered from a compendium of Economics and Finance journal articles published

in 2022. The 25% quantiles of these R2 values stand at 9.7% for economics and 5.8% for

finance, suggesting that models in these disciplines frequently rely on covariates with modest

explanatory power. Moreover, Figure 1 focuses solely on published papers, which likely skews

towards studies with higher R2 values due to selection bias. This suggests that the presence

of weak signals may be even more widespread than the data here indicates.

The decision to incorporate weak signals into a regression model is fraught with the

peril of overfitting, which can undermine predictive performance. This issue arises when the

errors associated with estimating the coefficients of these weak signals outweigh the benefits

of reducing bias that their inclusion offers. To include these variables or not thereby hinges

on a trade-off between bias and variance. Compounding this challenge is the increasing

prevalence of high-dimensional covariates in data-rich environments, a scenario frequently

encountered recently, which can further exacerbate prediction errors due to the scarcity in

terms of the sample size relative to the dimensionality of covariates.

Machine learning methods, known for their emphasis on variable selection and dimension

reduction, have proven effective in mitigating overfitting and detecting true signals from false

ones, particularly when the true signals are strong. These methods employ regularization

techniques, such as penalizing the ℓ1 or ℓ2 norms of model parameters, to achieve this ob-

jective. A pivotal question arises: Can machines learn weak signals, or in other words, can

they surpass the naive zero-estimator? The zero estimator, designed to ignore all covariates,

serves as a passive baseline in the context of weak signals. If an estimator manages to surpass

this baseline, it implies that it has effectively learned valuable signals. Conversely, failing to

1The comparison of the magnitudes of regression coefficients becomes meaningful only when the predictor
variables have been normalized. This premise is implicitly assumed in our subsequent discussion.
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Figure 1: Histograms of R2s in Selected Economics and Finance Journals
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Note: The histograms depict R2s manually collected from published papers in a selection of Economics and

Finance journals in 2022. This collection comprises data from five Economics journals (left) and three Finance

journals (right). Specifically, there are a total of 411 papers published in the American Economic Review,

Econometrica, Journal of Political Economy, Quarterly Journal of Economics, and Review of Economic

Studies, resulting in 8, 129 R2 observations. In addition, there are 380 papers from the Journal of Finance,

Journal of Financial Economics, and Review of Financial Studies, contributing 12, 198 R2 observations.

do so indicates a deficiency in its learning capacity.

In view of these considerations, we shift our focus to evaluate the relative performance

of regularization techniques, particularly Ridge and Lasso estimators, against the zero esti-

mator within high-dimensional regression contexts, where the dependent variable is driven

by predictors that exhibit weak correlations with it.

In scenarios with sufficiently strong signals, both Lasso and Ridge estimators are expected

to outperform the zero estimator by effectively capturing and utilizing at least some of these

signals. Hence, accurately defining the notion of “weak” signals is crucial at the outset

of our investigation. This definition serves a dual purpose: it prevents the scenario from

defaulting to trivial comparisons akin to strong signal cases and ensures practical relevance

to finite sample scenarios. We characterize a weak signal scenario as one in which the

zero estimator, which always predicts the value zero, achieves the minimal Bayes prediction

risk asymptotically. This setting turns out to encompass a sufficiently wide class of data

generating processes (DGPs), and it approximates a finite sample reality in which the zero

predictor serves as a competitive benchmark. If the zero predictor were not optimal, there

would exist an estimator that dominates it, having identified some of the useful signals. In

such instances, we would classify these scenarios as cases of strong signals.
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In the defined weak signal scenarios, conventional error-bound analyses are insufficient in

distinguishing the performance of different estimators. All three estimators — Lasso, Ridge,

and the zero estimator — can attain the optimal Bayes prediction error, rendering them

asymptotically indistinguishable. Intuitively, this occurs as the tuning parameters for both

Ridge and Lasso estimators approach infinity, where Ridge tends toward zero, while Lasso

becomes equivalent to zero.

To compare the predictive performance of these estimators, we employ a precise error

analysis approach, which enables us to zoom in and explicitly characterize the relative dif-

ferences in the asymptotic behavior of zero, Ridge, and Lasso. This nuanced analysis reveals

that with an appropriately chosen tuning parameter, Ridge asymptotically outperforms the

zero estimator. In contrast, Lasso does not surpass the zero estimator’s performance, re-

gardless of its tuning parameter choice. This finding aligns with the intuition that shrinkage

methods like Ridge are more effective in environments with more homogenous signal strength.

On the other hand, selection methods like Lasso are preferable in scenarios where there is a

clear distinction between true and false signals. In weak signal contexts where this distinction

is blurred, the advantage of Lasso tends to wane.

The assumptions about the DGPs in our analysis are sufficiently versatile to encompass

a range of scenarios, including spike-and-slab models (George and McCulloch (1993)), where

traditionally, Lasso has been the method of choice. Moreover, our analysis permits the cases

where regression coefficients follow a Gaussian distribution, a scenario where Ridge regression

represents the posterior mean from a Bayesian perspective. This generality in DGP ensures

that our findings do not inherently favor one estimator over the other, providing a balanced

evaluation of their respective capabilities and limitations in weak signal scenarios.

Our study further emphasizes the validity of the cross-validation algorithm in identifying

the optimal tuning parameter for Ridge regression, even in contexts with weak signals. This

suggests that cross-validation remains a robust tool for model tuning, resilient to variations

in signal strength. Moreover, we find that in the optimal Ridge regression, the out-of-sample

R2, a metric frequently used to evaluate the performance of different estimators on unseen

data, proves a relevant indicator of the signal-to-noise ratio in the DGP, despite a notable gap

between its asymptotic limit and the population R2 inherent to the underlying regression.

In the final aspect of our theoretical analysis, we expand our framework to include mod-

els featuring a mix of signal strengths. This section specifically addresses scenarios in which

a benchmark model contains potentially strong signals. We then shift our focus to assess

benefit in harnessing predictive power from the weak signals that remain. To this end, we
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derive ordinary least squares (OLS) residuals, from which the impact of potentially strong

covariates in the benchmark model has been removed. Consistent with our earlier findings,

applying Ridge regression to these residuals, using the remaining covariates, enhances predic-

tive performance compared to a baseline estimator that ignores these additional covariates.

Our simulation analysis corroborates our theoretical findings: the Ridge estimator sur-

passes zero, which in turn edges out Lasso, especially in DGPs characterized by low R2

values. Moving to more sophisticated machine learning techniques, we find that Random

Forest (RF), yielding a dense model with almost all variables included, outperforms the zero

estimator, which itself surpasses Gradient Boosted Regression Trees (GBRT). Resembling

Lasso, GBRT tends to produce more sparse models in these scenarios of weak signal strength.

Furthermore, Neural Networks (NNs), when paired with the ℓ2-norm regularization, can yield

superior predictions. In contrast, applying an ℓ1-penalty in these networks does not yield

comparable results.

From an empirical standpoint, our analysis covers six datasets derived from macroeco-

nomics, microeconomics, and finance. Five of these datasets are in line with those used

by Giannone et al. (2022), and one is sourced from Gu et al. (2020). Our finance exam-

ples delve into predicting market returns using financial and economic indicators, as well

as firm-level return prediction based on their specific characteristics. In the macroeconomic

context, we examine time-series predictions of industrial production using macroeconomic

indicators, and a cross-country GDP growth prediction, utilizing socio-economic, institu-

tional, and geographical factors. Our microeconomic studies focus on crime rate predictions

and pro-plaintiff appellate decisions in takings law rulings.

The relevance of weak signals in datasets is contingent on the choice of benchmark models.

For instance, when compared to a constant benchmark model, weak signals are revealed in

four out of six datasets. Further benchmarking against covariates informed by economic

theory reveals weak signals across all datasets, making them particularly well-suited for the

application of our asymptotic theory. Drawing from their empirical analysis of these datasets,

Giannone et al. (2022) argue that sparsity may be an illusion, as optimal predictive models

often rely on a large number of covariates. Our collective theoretical and empirical evidence

points to signal weakness as a key factor in the underperformance of Lasso. As our results

suggest, even in cases where the majority of signals have zero coefficients in the true DGP,

Ridge may still outperform Lasso if the true signals are weak. This comparative analysis of

their performances thus does not necessarily offer insights into the nature of the DGP itself.

In light of these findings, we recommend a cautious approach to employing Lasso in
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economic and financial settings. Despite its popularity as a modern counterpart to OLS,

Lasso’s effectiveness may be compromised in scenarios characterized by weak signals. Our

study complements the findings of Kolesár et al. (2024), who highlight issues with sparsity-

based estimators, such as their lack of invariance to reparametrization and sensitivity to

normalizations that are otherwise innocuous to ordinary least squares.

Our paper is closely related to the literature on the theoretical performance of Ridge and

Lasso, with two main threads being particularly relevant. The first focuses on error-bound

analysis. For Ridge, Hoerl and Kennard (1970) show that the prediction error decreases at

a rate of p/n, where p is the number of covariates and n the sample size, with its magnitude

tied to the eigen-structure of the design matrix. For Lasso, the prediction error vanishes if

s log p/n→ 0, where s is the number of non-zero parameters (Zou, 2006, Zhao and Yu, 2006,

Zhang and Huang, 2008, Bickel et al., 2009). However, we consider an asymptotic setting

where these error bounds fail to distinguish Ridge and Lasso from the zero estimator, as their

leading-order prediction errors are identical. This motivates a more granular, higher-order

analysis of prediction errors.

The second, more recent strand of research focuses on determining the precise probability

limit of the prediction error for Ridge and Lasso.2 Bayati and Montanari (2012) employ

approximate message passing algorithms to link them with the Lasso estimator and derive

its error limit. Alternatively, Thrampoulidis et al. (2015) use the Convex Gaussian Minimax

Theory (CGMT) to simplify Lasso’s optimization problem, enabling precise error derivation.

For Ridge regression, Dicker (2016) provides analogous insights into its prediction error.

However, these precise error analyses often rely on stringent parametric assumptions, such

as independently Gaussian-distributed design matrix elements. Dobriban and Wager (2018)

extend Dicker (2016)’s work by accommodating dependent covariates and non-Gaussian

predictors, leveraging universality results from random matrix theory.

This paper is organized as follows. Section 2 presents the main theoretical results regard-

ing Ridge and Lasso regressions. Section 3 conducts simulations to illuminate our theoretical

predictions while also expanding the analysis to assess the performance of advanced machine

learning methods under weak signals. Lastly, Section 4 provides empirical results supporting

2The technique of precise error analysis has provided valuable insights into various machine learning
methods. For example, Liang and Sur (2022) use CGMT to examine the properties of minimum ℓ1-norm
interpolation and boosting in linear models. Miolane and Montanari (2021) explore cross-validation for Lasso,
while Hastie et al. (2022) investigate minimum ℓ2-norm interpolation, shedding light on the double-descent
phenomenon in neural networks and the benefits of overparameterization. Regarding variable selection, Su
et al. (2017) study the false discovery rate of the Lasso path, and Wang et al. (2020) compare the variable
selection properties of bridge estimators.
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the practical relevance of our theoretical results.

Notation: For any x ∈ R, we refer to max(x, 0) as x+. For any vector x, ∥x∥0, ∥x∥1,
∥x∥ and ∥x∥∞ represent its ℓ0, ℓ1, ℓ2 and ℓ∞ norms, respectively. For a real matrix A, we

use ∥A∥ and ∥A∥F to denote its spectral norm (or ℓ2 norm), and the Frobenius norm, that

is,
√
λmax(A⊤A), and

√
Tr(A⊤A), respectively. In the case where A is a p× p matrix, λi(A)

denotes its i-th largest eigenvalue, for 1 ≤ i ≤ p. We use the notation xn ≲ yn when there

exists a constant C such that xn ≤ Cyn holds for sufficiently large n. Similarly, we use

xn ≲P yn to denote xn = OP(yn). If xn ≲ yn and yn ≲ xn, we write xn ≍ yn for short.

Similarly, we use xn ≍P yn if xn ≲P yn and yn ≲P xn.

2 Theoretical Results

2.1 Model Setup

We start with the following linear regression model:

y = Xβ0 + ε, (1)

where y ∈ Rn, X ∈ Rn×p, β0 ∈ Rp and ε ∈ Rn. Throughout our discussion, X, β0, and ε are

treated as random variables, mutually independent of one another. Central to our analysis is

the calculation of the probability limit of the prediction errors, which necessities assuming a

(prior) probability distribution on the coefficients. This setting aligns with standard practices

in the literature on precise errors, which also connects our analysis of prediction error with

Bayes risk.

Our objective is to investigate the predictive performance of machine learning techniques

in the presence of weak signals.3 To accomplish this, we focus on a high-dimensional regres-

sion setting characterized by an increasing number of predictors, that is, p → ∞. In such a

context, regularization techniques become not just relevant but often necessary due to the

challenges posed by the curse of dimensionality.

Moreover, our specific focus is on situations where the signals are weak, characterized

by the condition: ∥β0∥2 ≍P τ → 0. The choice to use ∥β0∥ as the metric for characterizing

weak signals is due to its close relationship with the widely-adopted R2 metric in regression

analysis, which provides a familiar and intuitive understanding of signal strength.

3Several studies, including Donoho and Jin (2004), Hall and Jin (2010), and Jin and Ke (2016), have
explored variable selection in the context of rare and weak signals. However, our focus lies on prediction,
particularly in asymptotic settings where identifying non-zero coefficients is infeasible.
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Our investigation then delves into an asymptotic analysis within a regime broadly char-

acterized by these two conditions. The exact conditions p, τ , and the sample size n satisfy

will be provided in detail once we introduce the baseline predictor.

Now, we proceed to present the assumptions governing the DGP of X:

Assumption 1. The covariates X ∈ Rn×p are generated as X = Σ
1/2
1 ZΣ

1/2
2 for an n × p

matrix Z with i.i.d. standard Gaussian entries, deterministic n × n and p × p positive

definite matrices Σ1 and Σ2.
4 In addition, there exist positive constants c1, C1, c2, C2 such

that c1 ≤ λi(Σ1) ≤ C1, i = 1, 2, . . . , n and c2 ≤ λi(Σ2) ≤ C2, i = 1, 2, . . . , p.

This assumption effectively accommodates both time series and cross-sectional depen-

dence among the covariates in X, with Σ1 capturing both heteroskedasticity and autocor-

relations, while Σ2 characterizes cross-sectional correlations. The constraints placed on the

eigenvalues of Σ1 and Σ2 serve a dual purpose. First, the upper bounds on these eigenvalues

eliminate strong time series and cross-sectional dependencies within X. Second, the lower

bounds prevent multicollinearity and the scenario where an observation at a particular time

point is linearly dependent on observations from other times.

Moreover, since we focus on prediction rather than variable selection, the dependence

structure among X does not adversely impact Lasso’s predictive performance, even though

its variable selection properties are sensitive to strong dependence among covariates. In

fact, Lasso can achieve a small prediction error even when the signals are highly correlated.

For further discussion, see Section 7.4 of Wainwright (2019). Additionally, our comparison

between Ridge and Lasso remains valid even when the covariates of X are independent.

While the Gaussian assumption for X is integral to our use of Gordon’s inequality (Gor-

don (1988)) for Gaussian processes in the proof, it does raise concerns regarding the robust-

ness of our findings when this assumption is not met in real-world scenarios. Our simulation

results indicate that the Gaussian assumption appears non-essential and our asymptotic

theory approximates finite sample behavior even with relatively small sizes, typically a few

hundred observations. This observation aligns with similar findings in random matrix the-

ory, where asymptotic properties initially derived for Gaussian ensembles were subsequently

shown to extend to a wider spectrum of random matrices — a phenomenon referred to as

the universality, as also noted by Bayati and Montanari (2012). In fact, in cases where Σ1 is

the identity matrix, Dobriban and Wager (2018) demonstrate the feasibility of conducting

precise error analysis using random matrix theory, thus bypassing the Gaussian assumption.

4We are also able to accommodate random Σ1 and Σ2, with an additional assumption that their entries
are mutually independent and also independent of Z.
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However, their technique appears to be only applicable to the Ridge estimator. Our aim is

to conduct a comparative analysis of both Ridge and Lasso under a unified framework.

Next, we specify the assumptions regarding ε. Similar to the case of X, we introduce Σε

to account for heteroskedasticity and autocorrelations in the noise.

Assumption 2. Let ε = Σ
1/2
ε z, where z comprises i.i.d. variables with mean zero, variance

one and finite fourth moment and Σε is a positive definite matrix satisfying cε ≤ λi(Σε) ≤ Cε,

i = 1, 2, . . . , n, for some fixed positive constants cε and Cε.

If Σε is a diagonal matrix, its spectral norm is evidently bounded under the condition

that every element along the diagonal is bounded, i.e., that ε has finite variances. In the

appendix, we further establish that even if the noise follows a stationary process characterized

by exponentially decaying autocorrelations, the spectral norm of Σε remains bounded.

Under Assumptions 1 and 2, it follows that ∥Xβ0∥ ≍P

√
n ∥β0∥ and ∥ε∥ ≍P

√
n. This

indicates that the magnitude of each entry in matrix X and the error term ε neither explode

nor vanish asymptotically. Consequently, the magnitude of the signal-to-noise ratio (or

prediction R2) is entirely dictated by ∥β0∥. Next, we impose an assumption that governs the

properties of a large number of parameters collected in β0:

Assumption 3. The vector b0 =
√
pτ−1β0 comprises i.i.d. random variables, each following

a prior probability distribution F belonging to the class F . The class F is defined such that

any included random variable can be represented as q−1/2b1b2, where b1 and b2 are indepen-

dent, b1 follows a binomial distribution B(1, q), and b2 is a sub-exponential random variable

with a mean of zero and a variance denoted as σ2
β.

Without loss of generality, we use the term
√
pτ−1 as the normalization factor, ensuring

that ∥β0∥2 ≍P τ . This choice of normalization facilitates a clearer interpretation of our

results. While the i.i.d. assumption may seem strong, it offers greater transparency by

simplifying more complex technical assumptions necessary to derive essential probability

bounds. In particular, this assumption allows for important classes of models, such as a

spike-and-slab prior for b0, extensively studied by Giannone et al. (2022) to examine the

empirical relevance of sparsity in economic datasets. Each element of b0 follows a mixed

distribution, such as when q = 1, with b2 modeled by (1 − υ)ψ0 + υψ1, where υ, a fixed

constant within [0, 1], modulates the mix between the spike (ψ0) and slab (ψ1) components of

the prior. These components may assume the form of Gaussian distributions, as suggested by

George and McCulloch (1993), or Laplace distributions, as explored in Rovcková and George

(2018). More generally, the formulation q−1/2b1b2 accommodates a spike-and-slab model
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with more extreme sparsity, facilitating a scenario where sparsity, q, can vanish (q → 0)

through the component q−1/2b1. This scaling, q
−1/2, ensures the variance of q−1/2b1b2 remains

finite and non-vanishing. Essentially, q dictates the sparsity of β0: when P(b2 = 0) = 0,

∥β0∥0 ≍P pq. In scenarios with strong signals (τ = 1), a DGP with q nearing zero typically

favors the Lasso estimator, whereas a q closer to one suggests a preference for the Ridge

estimator. Therefore, this framework does not inherently privilege any particular estimator.

Our theoretical exploration considers the case when τ → 0. We will apply this spike-and-slab

model in our simulations to validate our theoretical findings.

The underlying assumptions that justify Ridge and Lasso are notably distinct, particu-

larly in the context of error-bound analysis. For instance, the analysis of Lasso often requires

the approximate sparsity condition and the restricted eigenvalue condition (see, e.g., Belloni

et al. (2013b) and Bickel et al. (2009)). On the other hand, the convergence rate of Ridge’s

prediction error requires intricate conditions on the eigenvalue structure of the design ma-

trix, as discussed in Tsigler and Bartlett (2023). In contrast, our analysis here compares the

asymptotic properties of different estimators within a common framework.

2.2 Estimators

We now turn our attention to the discussion of the estimators. In scenarios involving weak

signals, characterized by ∥β0∥ → 0, a straightforward and natural baseline estimator emerges,

that is, the naive zero estimator. This estimator is clearly consistent in terms of the ℓ2-loss

of the estimation error, because the error reduces to ∥β0∥, which vanishes in this context.

The zero estimator functions as a passive baseline, serving as a benchmark for a scenario

where no learning occurs. To surpass the performance of the zero estimator, any alternative

estimator must harness some of the available weak signals. This indicates the alternative

estimator’s capability to successfully identify and leverage predictive signals, even when

they are weak. Therefore, to address the earlier question of whether machines can learn

weak signals, we need to compare the machine learning method’s performance with that of

the zero estimator. Only if they can do so can they outperform the naive zero estimator.

In our study, we consider Ridge and Lasso as contenders that leverage machine learning

techniques. These methods are widely used benchmarks in practice, owing to their simplicity

and universality. An in-depth analysis of these estimators provides valuable insights into their

specific regularization techniques, which can be extended to more advanced models.

The Ridge estimator, denoted as β̂r, is the solution to the following optimization problem:
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β̂r(λn) := argmin
β

1

n
∥y −Xβ∥2 + pλn

n
∥β∥2, (2)

where λn is its tuning parameter governing the strength of the regularization. In contrast,

the Lasso estimator, denoted as β̂l, is defined as:

β̂l(λn) := argmin
β

1

n
∥y −Xβ∥2 + λn√

n
∥β∥1. (3)

By convention, and without loss of generality, the terms involving penalties are typically

scaled by p/n in the case of the Ridge estimator and by 1/
√
n in the case of Lasso.

In addition to Ridge and Lasso, our theoretical results also encompass the ordinary least

squares (OLS) estimator and the Ridgeless estimator, both of which correspond to special

cases of Ridge when the tuning parameter λn is set to zero. When p ≤ n, the least squares

problem yields a unique solution, which is the OLS estimator. However, when p > n, the least

squares problem has an infinite number of solutions. Among these solutions, the Ridgeless

estimator can be regarded as a minimum-norm interpolating linear predictor, aiming to

minimize the ℓ2-norm of β:

β̂r(0) = argmin
β

∥β∥, s.t. Xβ = y, (4)

as noted by Bartlett et al. (2020). It is also possible to explore other interpolators, such as

the minimum ℓ1-norm interpolator studied by Liang and Sur (2022). Future research might

extend our analysis to other penalized linear estimators, such as Elastic Net, as introduced

by Zou and Hastie (2005), or SCAD by Fan and Li (2001).

2.3 Bayes Risk

With β0 estimated, it is straightforward to construct corresponding linear predictors. Now,

we proceed to define the metric by which we assess various predictors. For any predictor,

our primary interest is its Bayes prediction risk. This risk is related to the expected squared

prediction error evaluated at a new, independent data point (xnew, ynew). In the case of a

linear model, we can write the prediction error explicitly as:

EF (y
new − ŷnew)2 = σ2

ε + EF

[
(xnew)⊤(β̂ − β0)

]2
= σ2

ε + EF

{
E
[
((xnew)⊤(β̂ − β0))

2|X, y, β0
]}

= σ2
ε + EF∥Σ1/2

2 (β̂ − β0)∥2, (5)
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where the subscript in the expectation operator EF (·) emphasizes the fact that the expec-

tation is taken with respect to the prior distribution of b0 =
√
pτ−1β0. Given that σ2

ε does

not depend on the estimator, it is the second term in (5) that governs the relative predictive

performance of different estimators. Barring ∥Σ2∥, the prediction risk is closely tied to the

estimation error of β̂, i.e., ∥β̂ − β0∥.
Formally, we define the Bayes prediction risk associated with an estimator β̂ as

R(β̂, F ) := EF∥Σ1/2
2 (β̂ − β0)∥2.

The predictor that minimizes this Bayes risk is termed the Bayes predictor. In our framework,

it is straightforward to show (see Chapter 4 of Berger (1985)) that the Bayes predictor

corresponds with the predictor that is derived from the posterior mean of β0, which is

represented as EF (β0|X, y). We denote its Bayes risk as R(F ).5

Under strong signals, i.e., τ = 1, and suppose that Σ1, Σ2 and Σε are identity matrices,

p/n→ c0 ∈ R+, significant progress has been made in understanding the asymptotic behavior

of Bayes risk. For Ridge regression, notable studies by Dicker (2016) and Dobriban and

Wager (2018) have derived the asymptotic limit of the Bayes risk.6 Similarly, in the case

of Lasso, several studies, such as those conducted by Bayati and Montanari (2012) and

Thrampoulidis et al. (2018), have established its asymptotic Bayes risk limit.7

In Figure 2, we present two heatmaps, with the y and x axes representing various values

of p/n and ∥β0∥2 = τσ2
β. The left heatmap illustrates the ratio of Bayes risk between optimal

5There exists an extensive body of literature focused on empirical Bayes methods, which explores feasible
approaches for implementing EF (β0|X, y), in cases where F is unknown, see, e.g., Robbins (1964), Efron
(2012), Brown and Greenshtein (2009), and Jiang and Zhang (2009).

6The exact form of the limit is given by

lim
n→∞

R(β̂r(λn), F ) = c0m(−λ, c0) + λ(λσ2
β − c0)m

′(−λ, c0), (6)

where λ = limn→∞ c0λn and m(−λ, c0) =
(
−(1− c0 + λ) +

√
(1− c0 + λ)2 + 4c0λ

)
/2c0λ.

7The limit in the case of Lasso can be explicitly written as follows: limn→∞ R(β̂l(λn), F ) = (α∗)2, where

α∗ = argmin
α≥0

 inf
τg>0

sup
β≥0
τh>0

βτg
2

+
1

c0
L

(
α,

τg
β

)
− ατh

2
− αβ2

2τh
+ λG

(
αβ

τh
,
αλ

τh

) . (7)

Here λ = limn→∞ λn/
√
c0, L(c, τ) := E[ex2(cZ + ε, τ) − ε2], and G(c, τ) := E[e|x|(cZ + Xb, τ) − |Xb|],

with ef (y, τ) := minv(y − v)2/2τ + f(v), where random variables Z, ε, and Xb follow a standard normal
distribution (Z ∼ N (0, 1)), the distribution of the noise, and the distribution F , respectively.
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Figure 2: Comparison of Prediction Errors: Optimal Ridge and Lasso vs. the Zero Estimator
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Note: The left panel illustrates the ratio of prediction error between the optimal Ridge and the baseline zero

estimator. Conversely, the right panel presents a similar comparison for the optimal Lasso estimator against

the zero estimator. Both axes, y and x, depict a range of p/n ratios and ∥β0∥2 values, corresponding to data

generated in accordance with the model described in (1), with Σ1, Σ2, and Σε in Assumptions 1 and 2 set

as identity matrices. We set b0 as a Dirac-spike and a Gaussian slab with q = 1/5. In this context of strong

signals, the prediction errors for both optimal Ridge and Lasso are calculated using tuning parameters that

are optimally selected to minimize the expected prediction errors’ probability limits, as given by (6) and (7).

Ridge and the zero estimator, while the right heatmap represents the ratio of optimal Lasso

against the zero estimator. For both Ridge and Lasso, their optimal tuning parameters

are selected by minimizing the probability limits of their Bayes risk given by (6) and (7),

respectively. A prediction error ratio below 1 within these visualizations suggests that the

zero estimator is outperformed.

The heatmaps, as anticipated, clearly demonstrate that both Ridge and Lasso estimators

surpass the performance of the zero estimator. This superiority is particularly pronounced

in scenarios involving strong signals and relatively lower dimensions. Notably, the disparity

between these estimators becomes less pronounced as the norm of ∥β0∥ approaches zero and

the ratio p/n increases, indicating a shift towards scenarios characterized by weaker signals.

The existing result on precise error analysis is primarily built upon the assumption of strong

signals, where τ = 1. To discern the performance of various estimators under weak signal

conditions, a more intricate analysis in the limiting case (τ → 0 and p/n ̸→ 0) is necessary.

2.4 Zero’s Optimality and Relative Prediction Error

Figure 2 also indicates that our attention should be directed towards a regime where the

zero estimator exhibits meaningful competitiveness. Otherwise, we may question the ap-

propriateness of our definition of “weak” signals if some machine learning approaches can
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obviously outperform it by a wide margin.

One might be tempted to define “weak signals” as instances where the signal strength falls

below a certain “detection boundary,” thereby becoming indiscernible through hypothesis

testing.8 Our primary focus is on prediction, rather than signal detection. This distinction

is key because, even when signals are undetectable by hypothesis testing, their collective

contribution to prediction can still outperform the zero predictor. The zero predictor serves

as a natural benchmark for demonstrating the capacity of machine learning to utilize weak

signals.

To motivate our concept of weak signals, we analyze a regime where the zero estimator

achieves certain notion of optimality, indicated by its Bayes risk being identical to that of

the Bayes predictor. This scenario is delineated more precisely by the assumption below:

Assumption 4. n−1p → c0 ∈ (0,∞], n−1τp(log p)4 → 0, nτp−2/3(log p)−4 → ∞, and

n−1pqτ−1(log p)−4 → ∞.

Assumption 4 covers a wide spectrum of signal strengths and counts, while simultaneously

imposing constraints to prevent an excessively large p/n ratio and overly rapid vanishing of

τ . The first two constraints imply τ → 0, while the third imposes a lower bound on τ .

Together, these constraints require that τ is bounded below by n−1/3.

The final constraint addresses cases of extreme sparsity in β0. It becomes redundant when

q does not vanish, as it is already implied by the first two constraints. Collectively, these

conditions imply that (pq) log p/n is bounded below by τ , and consequently by n−1/3 (up

to a logarithmic factor). Importantly, these constraints do not entirely exclude the sparsity

assumptions commonly adopted in the literature when using Lasso: ∥β0∥0 log p/n→ 0, where

∥β0∥0 ≍P pq.

These constraints serve to exclude edge cases where the relative performance of different

estimators cannot be conclusively determined using our proof technique. In the appendix,

we investigate scenarios outside the scope of these constraints, such as cases of extreme

sparsity with only one true signal in the DGP. By employing an alternative proof method

that leverages the closed-form solution of Lasso in a special case, we demonstrate that these

constraints are not necessary for arriving at our conclusions.

To facilitate the discussion of the optimal estimator in our context, we refer to the

definition provided by Robbins (1964).

8The “detection boundary” in this scenario represents the threshold level of signal strength at which
statistical tests can reliably discern the presence of a signal amidst noise. Relevant tests include Ingster
et al. (2010), Cui et al. (2018), and Li et al. (2020). However, this boundary generally hinges on the chosen
alternative and the maintained hypotheses, presenting a challenge in establishing a unified benchmark.
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Definition 1. We say β̂ is asymptotically optimal relative to F , if it satisfies

lim
n→∞

R(β̂, F )

R(F )
= 1.9

Theorem 1. Assume that Assumptions 1−4 hold. Furthermore, assume that the error

term ε in Assumption 2 follows a Gaussian distribution.10 Under these conditions, the zero

estimator is asymptotically optimal relative to any distribution F ∈ F .

This theorem suggests that regardless of the unknown prior distribution, the prediction

risk associated with the zero estimator is asymptotically identical to that of the Bayes pre-

dictor. Notably, while the Bayes predictor requires knowledge of the prior distribution and

is thus infeasible in many practical scenarios, the zero estimator achieves the same level of

prediction risk without requiring such information. From this perspective, the zero estimator

is both feasible and optimal.

It is noteworthy that the zero estimator can be considered as a particular case of both

Ridge and Lasso estimators when a sufficiently large tuning parameter is chosen. Given this

perspective, and in accordance with the insights of Theorem 1, the relative Bayes risk of

the optimal Ridge and Lasso estimators, in comparison to the zero estimator, is expected

to asymptotically approach one. This result suggests that under conditions of weak sig-

nals, merely comparing their Bayes risk ratios may not be an effective approach to tell any

differences among these estimators.

As such, we shift our attention to the relative prediction error between any estimator

β̂ and the zero estimator, defined as follows, in absolute difference rather than their ratio,

in the spirit of Bayesian regret. To ensure a meaningful scale in the limit, we multiply the

relative error by pn−1τ−2, and adopt the following metric for comparison:

∆(β̂) = pn−1τ−2(∥Σ1/2
2 (β̂ − β0)∥2 − ∥Σ1/2

2 β0∥2). (8)

∆(β̂) magnifies the relative prediction error, a measure that predominantly depends on higher

order differences for estimators we consider. Based on this definition, if ∆(β̂) > 0 holds with

probability approaching one, it indicates that the estimator β̂ exhibits inferior prediction

9The definition of asymptotic optimality is provided in terms of a ratio to accommodate more general
scenarios where R(F ) varies with the sample size n.

10The Gaussian assumption on ε is only used to facilitate considerations of optimality, which is a standard
assumption in the empirical Bayes literature, e.g., Jiang and Zhang (2009). While this assumption motivates
our characterization of weak signal regimes, it is not utilized in follow-up analysis of the estimators.
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performance compared to zero. Conversely, if ∆(β̂) < 0 holds with probability approaching

one, it implies that the estimator β̂ outperforms zero.

Before we proceed to present our main results in the following section, we need to provide

technical conditions governing the limiting behavior of Σ1, Σ2, and Σε:

Assumption 5. For matrices Σ1, Σ2 and Σε:

1

n
Tr(Σ1) = 1 +O(n−1/2),

1

p
Tr(Σ2) = σ2

x +O(p−1/2),
1

n
Tr(Σε) = σ2

ε +O(n−1/2).

Additionally, there exist constants θ1 to θ4 such that

1

n
Tr(ΣεΣ1) = σ2

εθ1 + o(nτ/p),

1

p
Tr(Σ2

2) = σ4
xθ2 + o(1),

1

n
Tr(ΣεΣ

2
1) = σ2

εθ3 + o(n/p),
1

n
Tr(Σ2

1) = θ4 + o(n/p).

As Σ1, Σ2, and Σε are positive definite, all of these constants θi, where i = 1, 2, 3,

and 4, are positive. The condition concerning Σ2 can be verified through a more primitive

condition often found in the literature—namely, the existence of the limit of Σ2’s empirical

spectral distribution, as assumed by Dobriban and Wager (2018). Regarding the conditions

concerning Σ1 and Σε, we establish in the appendix (Lemma 23) that when the time series of

covariates and noise are stationary with exponentially decaying correlations, these conditions

hold. In situations where all three matrices reduce to identity matrices, which is a common

scenario in the literature on precise error analysis, Assumption 5 holds trivially.

2.5 Analysis of the Ridge Estimator

In this section, we present the results of the Ridge estimator in the context of weak signals.

We begin by presenting the relative error of Ridge for any tuning parameter value:

Theorem 2. Assuming that Assumptions 1−5 hold, and setting λn = τ−1λ, we establish the

following convergence result:

∆(β̂r(λn))
P−→ α∗ := 2θ2σ

4
x

(
σ2
εθ1
2λ2

−
σ2
β

λ

)
.

This theorem yields several important findings. First, by minimizing α∗ with respect to λ,

we can determine the optimal tuning parameter value: λoptn = τ−1σ2
εθ1/σ

2
β. Furthermore, with
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the optimal tuning parameter in place, α∗ is negative, indicating that Ridge can effectively

learn weak signals when the tuning parameter is chosen appropriately.

Second, when we set λ→ ∞ (equivalently, τλn → ∞), the value of α∗ converges to zero.

This outcome is expected, as the use of a large tuning parameter makes the estimator’s

performance increasingly resemble that of the zero estimator. Nevertheless, it is noteworthy

that α∗ → 0−; in other words, as λ increases, the Ridge estimator consistently outperforms

the zero estimator until it gradually becomes indistinguishable from it in the limit.

Third, as λ → 0, in which case λn = o(τ−1), the corresponding value of α∗ tends to

positive infinity. This indicates that Ridge’s performance deteriorates to the point where

the Ridgeless estimator (corresponding to λ = 0) is surpassed by the zero estimator. This is

a significant departure from the strong signal setup in which Ridgeless can still outperform

the zero estimator, as demonstrated by Hastie et al. (2022). It is important to note that

the Ridgeless estimator, defined in the form of no regularization (λ = 0), is not completely

devoid of regularization. It incorporates implicit regularization by yielding the interpolator

that achieves the minimum ℓ2 norm. This inherent form of regularization enables the Ridge-

less estimator to effectively control variance, particularly in situations where the number of

predictors p exceeds the sample size n, thus ensuring desirable performance in strong signal

scenarios. In contrast, under conditions of weak signals, this implicit regularization is in-

sufficient for effective variance control. This inadequacy results in the estimated ∥β̂∥ being

substantially larger than ∥β0∥, leading to the poor performance of β̂.

Furthermore, given that the Ridgeless estimator is defined as the interpolator that min-

imizes ∥β̂∥, it follows that all linear interpolators, including, for instance, the one that

minimizes the ℓ1-norm, result in even larger values of ∥β̂∥. Consequently, these interpolators
also fail to outperform the zero estimator in contexts with weak signals.

Figure 3 provides an illustrative example of the relationship between the relative error

of the Ridge estimator and the tuning parameter λ, showcasing the theoretical insights we

have discussed. Corollary 1 below summarizes the result on the Ridgeless estimator:

Corollary 1. Under the same assumptions as in Theorem 2, the Ridgeless estimator, defined

by (4), satisfies:

∆(β̂r(0))
P−→ ∞.

Given Ridge regression’s ability to effectively learn weak signals with an appropriately

tuned parameter, the data-dependent selection of this parameter becomes crucial. A paradig-

matic approach for this purpose is K-fold cross-validation (CV).
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Figure 3: Ridge vs. Zero Estimator’s Relative Precise Error
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Note: In this plot, the black curve represents the probability limit of ∆(β̂r(λn)), denoted as α∗, as a function

of the tuning parameter λ, defined in Theorem 2, in the context of weak signals. To create this plot, we set

all parameters (c0, θ1, θ2, σx, σβ , σε) to one for simplicity.

In cases where the signals are strong, Hastie et al. (2022) demonstrate the effectiveness

of CV for Ridge. Specifically, the cross-validated tuning parameter converges in probability

to the optimal value within a pre-specified interval. The fact that this optimal value lies in

some known interval simplifies the derivation of the theoretical properties of CV. In scenarios

with weak signals, however, the optimal tuning parameter tends to diverge as the sample

size increases. The rate of divergence depends on the unknown strength of the weak signal,

τ . As we show next, CV remains a valid and useful tool in this case. To narrow our focus

to the matter of weak signals without delving into a complicated CV procedure, we consider

the case where both Σε and Σ1 are identity matrices. This assumption of no temporal

dependence in the data facilitates a more straightforward CV procedure for i.i.d. data.

To determine the optimal tuning parameter using K-fold CV, denoted as λ̂K−CV , we

begin by partitioning the rows of the design matrix X into K distinct subsets, labeled

as X(1), · · · , X(K). For each index i ∈ {1, · · · , K}, we define X(−i) as the submatrix of

X obtained by excluding the rows corresponding to X(i). Similarly, we have associated

subvectors y(i), ε(i), as well as y(−i), ε(−i). We next define β̂i
r(λn) for each λn as the solution

to the Ridge optimization problem for each index i = 1, · · · , K:

β̂i
r(λn) = argmin

β

{
1

n
∥y(−i) −X(−i)β∥2 +

pλn
n

∥β∥2
}
.
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Consequently, the tuning parameter selected by K-fold CV is given by

λ̂K−CV
n = argmin

λn∈[ϵ,∞)

1

n

K∑
i=1

∥y(i) −X(i)β̂
i
r(λn)∥2,

where ϵ > 0 is an arbitrary small constant. The following theorem provides justification for

the validity of this CV procedure in the context of weak signals:

Theorem 3. Under the same assumptions as in Theorem 2, if we also assume that

Σ1 = I, Σε = σ2
εI, ε follows a sub-exponential distribution, and that q−1τ−1n−1/2 log(p),

q−1/2τ−3/2n−1/2 log(p) → 0, then we can establish that:

τ λ̂K−CV
n

P−→ λopt = σ2
ε/σ

2
β.

This theorem justifies the use of λ̂K−CV
n as an approximation for the optimal tuning

parameter λoptn = λopt/τ (θ1 = 1 in this case) for Ridge. Importantly, this result does

not require prior knowledge of τ , making the CV approach directly applicable in practical

scenarios. The additional constraints on q become relevant only when q vanishes; otherwise,

they naturally follow from Assumption 4. These conditions ensure uniform convergence

across the spectrum of tuning parameter values, a prerequisite for the results of Theorem 3.

With our analysis of Ridge concluded, we will now turn our attention to Lasso.

2.6 Analysis of the Lasso Estimator

Unlike Ridge, the analysis of Lasso is more intricate, primarily because the Lasso estimator

lacks a closed-form formula. In the special case where Σ1, Σ2, and Σε are identity matrices,

several studies, including Bayati and Montanari (2012) and Thrampoulidis et al. (2018),

have established Lasso’s precise error given by (7). Additionally, based on (7), Wang et al.

(2020) conducted a small-signal Taylor expansion of α∗ with respect to σ2
β, which affects

α∗ through the prior distribution F . They concluded that the optimal Lasso estimator

fails to outperform optimal Ridge.11 In the general case we consider, pinpointing the exact

precise error appears a daunting task. Instead, we seek probability bounds that allow us to

characterize the location of the limit. This turns out sufficient for us to conclude that Lasso

cannot outperform zero for all values of its tuning parameter in the context of weak signals.

The next theorem summarizes our main findings:

11Their analysis does not address the scenario of Lasso with an arbitrary tuning parameter, nor does it
elucidate its relative performance compared to zero.
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Theorem 4. Assume that Assumptions 1−5 are satisfied and the tuning parameter λn is

chosen such that the following equation holds for some Cλ > 0:

pn−2τ−2EU∼N (0,Σ2)

∥∥∥(2σε√θ1|U | − λn)+

∥∥∥2

= Cλ.
12 (9)

Then, with probability approaching one, we have cα ≤ ∆(β̂l(λn)) ≤ Cα, where cα and Cα are

the solutions to the following equation in terms of x:

x−
√

2Cλ

c2
x = − Cλ

100C2

, (10)

where c2 and C2 are constants defined in Assumption 1.

Equation (9) implicitly determines the rate at which λn diverges to infinity. For any fixed

Cλ > 0, we can solve for the tuning parameter λn from (9), and derive the upper and lower

bounds, Cα and cα, from equation (10). Furthermore, equation (10) directly implies that Cα

and cα are non-negative, indicating that Lasso does not outperform the zero estimator for

any given tuning parameter value in the context of weak signals.

Moreover, as λn approaches zero, Cλ diverges to infinity, leading to a simultaneous di-

vergence of both cα and Cα. This suggests that the Lasso estimator behaves increasingly

worse compared to the zero estimator. Conversely, a larger tuning parameter λn causes Cλ

to converge to zero from the positive side. As a result, both cα and Cα converge to zero while

remaining non-negative. This implies that the performance of the Lasso estimator improves

but remains inferior to the zero estimator, until they become equivalent in the limit. Figure

4 visually represents upper and lower bounds for the relative error of Lasso in comparison

to the zero estimator across various tuning parameter values.

Intuitively, Lasso’s underperformance with weak signals arises from its challenge in dif-

ferentiating genuine from spurious signals. Its failure to detect true weak signals marginally

affects its performance relative to the zero estimator, which disregards such signals entirely.

The core issue with Lasso is its inability to effectively eliminate irrelevant signals. While a

sufficiently large tuning parameter could address this problem, our theory suggests that only

when the penalty is so substantial that Lasso becomes identical to the zero estimator does

it enforce an appropriate penalty.

In light of Lasso’s underwhelming performance, it is evident that in situations involving

weak signals, the elastic net estimator, which combines ℓ1 and ℓ2 norms of the parameters

12When applied to a vector, | · | and (·)+ represent element-wise operations.
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Figure 4: Lasso vs. Zero Estimator: Relative Precise Error Bounds
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Note: In this plot, the black curves represent the lower and upper probability bounds on ∆(β̂l(λn)), i.e.,

cα and Cα, as a function of the tuning parameter λn in the context of weak signals. In this setup, we fix

n = p = 2, 000. We assign the elements of b0 to follow a standard Gaussian distribution and set Σ2 as

the identity matrix I. As in Figure 3, we set all parameters (c0, θ1, θ2, σx, σβ , σε) to one. Finally, we select

τ = 0.001, which results in a population R2 around 0.1%.

in its penalty function, is unlikely to outperform Ridge.13

In contemporary regression analysis, particularly in the context of a large number of

covariates, Lasso has gained prominence as a valuable tool, often regarded as the modern

counterpart to OLS. Yet, our analysis reveals a critical caveat: in situations where the signals

are weak, Lasso, regardless of its tuning parameter choice, becomes an unsuitable option

unless the data are extremely sparse, to a degree that violates Assumption 4. The necessity

for sparsity increases with the weakness of the signal, positioning Lasso as a bet for extreme

sparsity. This finding has significant implications, especially in areas like economics and

finance, where large-scale regression analyses are commonplace, and signal-to-noise ratios

tend to be low. Conversely, our results strongly advocate for the use of Ridge regression in

scenarios characterized by weak signals. This insight underscores the importance of assessing

the data’s specific characteristics and the strength of the underlying signals when making

decisions regarding the most suitable regularization technique.

13Although a formal justification for this observation can be provided in the setting of Σ2 = I, we omit it
here due to space constraints.
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2.7 Assessing Signal-to-Noise Ratio

In line with this perspective, we delve into the assessment of the signal-to-noise ratio, a mea-

sure that can offer valuable insights into the viability of different machine learning techniques.

Our preceding analyses provide initial but indirect guidance in this regard. Specifically, if

Lasso underperforms the zero estimator, it implies a potential issue with the strength of the

signal in the data.

A more conventional and direct approach to evaluating the signal-to-noise ratio is through

the goodness-of-fit measure known as R2. However, in-sample R2 is prone to overfitting, and

as such, out-of-sample R2 is commonly used in machine learning. This metric essentially

involves the comparison of mean-squared errors between two predictors. For our specific

application, we have chosen to use zero as the reference predictor and define this metric for

a given estimator β̂ as follows:

R2
oos(β̂) = 1−

∑
i∈OOS(yi −Xiβ̂)

2∑
i∈OOS y

2
i

, (11)

where “OOS” represents the out-of-sample data.

Since a model’s predictive performance hinges on the signal-to-noise ratio, it is reasonable

to employ this metric to evaluate the signal-to-noise ratio inherent in the DGP. In situations

characterized by strong signals, it is expected that the out-of-sample R2 serves as a consistent

estimator for the signal-to-noise ratio as measured by the population R2. This holds true

irrespective of the specific estimator β̂ employed, as long as it is consistent with respect

to β0, i.e., ∥β̂ − β0∥ = oP(1). However, in situations characterized by weak signals, the

outcome depends critically on the choice of estimator beyond the signal-to-noise ratio itself.

As an illustration, both Lasso and Ridge are consistent in the sense that their prediction

errors asymptotically diminish, yet the out-of-sample R2 for Lasso can turn non-positive,

indicating either no improvement or underperformance compared to the zero estimator, as

we have shown in Theorem 4.

In the context of weak signals, the next proposition provides a theoretical justification

for the relevance of optimal Ridge’s R2
oos in assessing the signal-to-noise ratio in the data.

Proposition 1. Under the same assumptions as Theorem 3, and assuming that the out-of-

sample data follows the same DGP as the in-sample data, if noosp
−2n2τ 2 → ∞, where noos

is the size of the out-of-sample data, then for the optimal Ridge estimator, it holds that

R2
oos(β̂r(λ

opt
n )) = p−1nθ2(R

2)2 (1 + oP(1)) ,
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where R2 denotes the population R-squared, given by τσ2
xσ

2
β/(τσ

2
xσ

2
β + σ2

ε) in this context.

Interestingly, when the size of out-of-sample data is sufficiently large, to the extent that

the estimation error in R2
oos does not mask the performance differential between the optimal

Ridge and the zero estimator, R2
oos is approximately proportional to the squared population

R2. While it does not exactly mirror the population R2, R2
oos still serves as an indicator

of signal strength in the data. The reason for their discrepancy is that in the weak signal

case, the numerator of the R2
oos—which reflects the relative prediction error between the two

estimators—decreases more rapidly than the numerator of R2. Therefore, the numerator of

R2
oos only provides a higher-order characterization of signal strength.

2.8 Mixed Signal Strengths and Alternative Benchmarks

In the preceding sections, our analysis primarily focuses on scenarios where all signals are

weak, leading us to consider the zero estimator as our natural benchmark. This section,

however, expands our analysis to include models where potentially strong signals serve as

benchmarks. Consider another DGP:

y = Wγ0 +Xβ0 + ε, (12)

where W ∈ Rn×d represents a predefined set of covariates. These covariates include poten-

tially strong signals and form the basis of the benchmark model. We allow the dimension d

to increase to ∞, however, it does so at a slower rate compared to n, ensuring that OLS of

y against W remains a viable method for estimation.

In many cases, W could simply be a vector of ones, allowing us to remain agnostic

about the magnitude of the regression’s intercept. In our empirical analysis, W can be

motivated from economic theory, whose impact on the response variable is of central interest.

Alternatively, W can encompass lagged values of y, thereby facilitating the inclusion of

temporal dependence in the benchmark model. This setup is particular relevant when using

an autoregressive model as a benchmark for forecasting economic variables. Exploring the

possibility of a data-driven selection of W is an intriguing direction for future research.

Building on these considerations, our focus now shifts to evaluating and comparing the

performance against the OLS benchmark with covariates in W . In this context, the OLS

benchmark predictor, ŷnewb , for a new observation (wnew, xnew) is defined as follows:

ŷnewb = (wnew)⊤γ̂, where γ̂ = (W⊤W )−1W⊤y. (13)
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The inclusion of W leads us to explore the following Ridge estimator with regularization

only imposed on coefficients of X:

β̂(λn) := argmin
β

{
min
γ

(
1

n
∥y −Wγ −Xβ∥2 + pλn

n
∥β∥2

)}
=argmin

β

{
1

n
∥MWy −MWXβ∥2 +

pλn
n

∥β∥2
}
, (14)

where MW = I−W (W⊤W )−1W⊤. Consequently, the estimator for γ is thus given by

γ̂(λn) = (W⊤W )−1W⊤(y −Xβ̂(λn)). (15)

The construction for Lasso is similar. Therefore, utilizing the estimated parameters

(β̂(λn), γ̂(λn)) we are able to formulate a predictor for y as

ŷnew = (wnew)⊤γ̂(λn) + (xnew)⊤β̂(λn) = ŷnewb + (x̂new)⊤β̂(λn), (16)

where x̂new = xnew −X⊤W (W⊤W )−1wnew.

Notably, equation (16) illuminates the role of the second term, (x̂new)⊤β̂(λn), specifically

highlighting the contribution of weak signals in contrast to the OLS benchmark, ŷnewb . More-

over, a comparison with the zero-benchmark scenario, previously analyzed, reveals a notable

distinction in the modification of the regressor and covariates in equation (14). In this in-

stance, our approach involves a regression of MWy against MWX, which intuitively means

predicting the residuals of the benchmark model using covariates that have been adjusted

to remove the dependence on W . While our earlier conclusions are likely still valid, the

inclusion of generated variables in regressions brings an additional layer of statistical error

that warrants careful examination. The forthcoming theorem will elucidate that this extra

error does not compromise our prior conclusion.

Given this context and our previous comparative analysis, we focus on the optimal Ridge

estimator in this scenario. This is because the performance of Ridgeless, OLS, or Lasso is

unlikely to show improvement with the incorporation of additional estimation error.

Theorem 5. Let the design matrix X be generated as X = Wη0+U . Assume that the triplet

(U, β0, ε) follows the same distribution as (X, β0, ε) in Theorem 2. Additionally, the matrixW

is independent from U , β0, and ε. Each covariate withinW is assumed to have a finite second

moment. Furthermore, we assume that d = o(n2p−1τ), and the eigenvalues of n−1W⊤W are

lower bounded by some positive constant. Given these assumptions, the predictor, ŷnew,
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as defined in (16) and based on the Ridge estimator from (14) with λn = τ−1λ, and the

benchmark predictor ŷnewb from (13), satisfy the following:

pn−1τ 2
(
EF

[
(ŷnew − ynew)2 | I

]
− EF

[
(ŷnewb − ynew)2 | I

] ) P−→ α∗, (17)

where I denotes the information set generated by (W,X, y, γ0, β0), α
∗ is defined in Theorem

2, and the tuple (ynew, wnew, xnew) satisfies (12).

This result indicates that a Ridge-augmented benchmark model demonstrates superior

performance compared to the benchmark model alone. In essence, this suggests that Ridge

estimator’s predictive performance retains its superiority over the zero estimator. Notably,

the error arising from the initial estimation of the benchmark model does not influence the

comparative performance between the Ridge and zero estimators.

3 Monte Carlo Simulations

In this section, we conduct simulation experiments to assess the finite sample performance

of our asymptotic theory. We begin by establishing a linear model setup and evaluate the

performance of Ridge and Lasso estimators.

3.1 Ridge and Lasso for Linear Models

Now, we provide details of the DGP given by (1) for the first simulation exercise. We set

(Σ1)ij = 2−|i−j| for 1 ≤ i, j ≤ n. We construct Σε as a diagonal matrix with i.i.d. entries

sampled from the uniform distribution U(0.5, 1.5). The eigenvalues of Σ2 are also simulated

from U(0.5, 1.5), with corresponding eigenvectors from a randomly generated orthogonal ma-

trix, forming Σ2. These matrices are generated once and then fixed throughout simulations.

By direct calculations, we have θ1 = 1, θ2 = 13/12, and θ3 = θ4 = 5/3.

We experiment with n = 500 and p = 300, dimensions that align closely with the

first microeconomic example studied below. For each simulated sample, we construct β0 as√
p−1τb0, with b0 drawn from a spike-and-slab distribution: (1− q)δ0 + qN (0, q−1σ2

β). Here,

δ0 represents the Dirac delta function, and we set σ2
β = 1. The error term ε is sampled from

N (0, 1), while the design matrix X is drawn from N (0, 1) and subsequently transformed by

multiplication with Σ
1/2
1 and post-multiplication with Σ

1/2
2 . We consider two cases for the

sparsity parameter, q = 0.2 and q = 0.8. To represent weak and strong signal scenarios, we

calibrate two values of τ to achieve R2 = 5% and 50%, respectively. The parameters q and
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τ (through R2) are varied as they are critical to the asymptotic performance, as highlighted

in Assumption 4. A total of 1, 000 Monte Carlo repetitions are conducted.

For each simulated sample, we compute the relative prediction error, ∆(β̂(λ̂K−CV
n )), as

defined in equation (8), with the tuning parameter for each method selected via cross-

validation. The histograms of these errors are presented in Figure 5. Additionally, Table 1

provides summary statistics, including quantiles and the percentage of values classified as

“zeros.” (where “zero” is defined as within machine precision).

The histograms reveal notable differences in the performance of Ridge and Lasso when

R2 is low, while showing that both methods outperform the zero estimator when R2 is high.

Ridge displays a clear probability mass on the negative side of the error distribution, even in

weak signal settings, underscoring its ability to outperform the zero estimator in most cases.

Notably, Ridge’s performance appears largely unaffected by changes in sparsity levels.

In contrast, Lasso struggles to capture weak signals effectively, as evidenced by a sub-

stantial probability mass on the positive side of the y-axis. While increasing the sparsity

level (i.e., lowering q) leads to a modest performance improvement for Lasso, it remains

inferior to Ridge overall. Table 1 further reveals that, in finite samples with high sparsity

levels, some probability mass for Lasso can fall on the negative side, as indicated by the

first quantile. Nevertheless, Lasso also shows a heavier probability mass at zero compared

to Ridge, consistent with the theoretical prediction that optimal Lasso solution collapses to

zero when signals are weak.

The above results use tuning parameters selected via 10-fold cross-validation. To validate

our theoretical findings independently of tuning parameter selection, Appendix A.1 presents

experiments with fixed tuning parameters. Additionally, Further simulations in Appendix

A.2 support our theoretical predictions regarding the R2
oos of the optimal Ridge. Appendix

A.3 presents evidence indicating that Type I error primarily influences Lasso’s performance

relative to the zero estimator. As λ increases, Type I error diminishes, leading to an im-

provement in Lasso’s performance, which ultimately becomes identical to that of the zero

estimator, while Type II error persists at a high level.

To examine the robustness of our theory in cases of extreme sparsity, Appendix A.4

examines the effect of further reducing Lasso’s sparsity level to q = 0.1, 0.05, and 0.02. The

results reveal that for each sparsity level, as R2 decreases, Ridge’s performance improves,

whereas Lasso’s performance deteriorates. This suggests that even under extreme sparsity

conditions, the relative performance is dictated by the strength of the signal. Ridge continues

to outperform both the zero estimator and Lasso when the signal is sufficiently weak.
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Figure 5: Simulation Results for Ridge and Lasso in Linear DGPs
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Note: The histograms depict the relative prediction error ∆(β̂r(λ̂
K−CV
n )) (top) and ∆(β̂l(λ̂

K−CV
n )) (bottom)

following equation (8) across 1, 000 Monte Carlo samples. We analyze three setups of (R2, q), where (R2, q) =

(5%, 0.2), (5%, 0.8), and (50%, 0.2).

3.2 Advanced Machine Learning Methods for Nonlinear Models

Appendix A.4 also demonstrates the robustness of our theoretical predictions under other

deviations from model assumptions. In this section, we extend our investigation to an im-

portant form of deviation: the application of nonlinear machine learning methodologies,

including RF, GBRT, and NNs, through simulation experiments. While providing a precise

theoretical analysis of errors for these algorithms remains challenging—and this part there-

fore involves some degree of speculation—we draw on insights from linear models to interpret

and contextualize our simulation findings.

We simulate the following DGP, expressed explicitly in element-wise form:

yi =

p∑
j=1

β0,jf(Zij) + εi, i = 1, . . . , n, (18)

where yi denotes the ith observation of the response variable, β0,j represents the coefficient

associated with a function f(·) of the predictor variable Zij.

In order to exploit insights from the prior simulation exercise within this new context,

we adopt the following procedure for simulating this model: We generate Zij by applying

an inverse transform to Xij, which was previously simulated in Section 3.1. Specifically,
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Table 1: Summary Statistics for Ridge and Lasso in Linear DGPs

Lasso Ridge
q R2 (%) Q1 Q2 Q3 #Zero Q1 Q2 Q3 #Zero
0.2 5% -0.127 0.000 0.521 360 -0.992 -0.501 -0.129 97
0.8 5% 0.000 0.000 0.975 400 -0.918 -0.541 -0.169 88
0.2 50% -0.508 -0.414 -0.331 0 -0.375 -0.300 -0.233 0

Note: The table illustrate the summary statistics (quantiles and the percentage of zeros) of relative prediction

error ∆(β̂(λ̂K−CV
n )), for Ridge and Lasso, based on 1,000 Monte Carlo samples. The analysis considers three

setups of (R2, q): (R2, q) = (5%, 0.2), (5%, 0.8), and (50%, 0.2).

Zij is defined as f−1(Xij), where the design matrix X is constructed using the identical

DGP as previously outlined. Additionally, both the coefficients β0 and the error term εi

follow the same baseline DGP as previously described. This methodology guarantees the

replication of the exact simulation results observed when regressing y on X. Nevertheless,

our primary focus now shifts to predicting y based on nonlinear models of Z without prior

knowledge of f(·). The effective signal-to-noise ratio diminishes relative to the linear case

due to the added complexity of learning an unknown function f(·). Needless to say, the

machine learning models we explore in the subsequent experiments are capable of handling

more general DGPs than the one given by Eq. (18).

3.2.1 Simulations with Tree Algorithms

Tree algorithms are essential in machine learning for handling complex DGPs with discrete

variables, nonlinearities, and intricate interactions. However, single tree models often under-

perform, prompting the use of ensemble methods to enhance predictions.

Two popular ensemble techniques are RF and GBRT. RF uses bagging, where multiple

trees are trained independently on bootstrap samples, and their predictions are averaged

to improve performance. In contrast, GBRT employs boosting, iteratively fitting residuals

from prior trees to build a strong ensemble from weak learners.

Since trees are invariant to monotonic transformations, it suffices to report their predic-

tion results for the linear DGP, as these are identical to those for the nonlinear DGP under

consideration.14 However, tree methods may underperform Ridge and Lasso, partly due to

an additional approximation error from using piecewise constant functions to approximate

the linear DGP. Therefore, the primary focus here should not be on comparing tree methods

with linear models but rather on assessing the effectiveness of different ensemble techniques

14Separate simulation experiments, not included here, confirm this observation.
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in capturing weak signals and comparing their performance to the zero predictor.

Our implementation of RF involves three tuning parameters: the depth of each individual

tree, ranging from 3 to 15; the number of randomly selected features used in each tree split,

varying from 10 to 300; and the ratio of bootstrapped samples, ranging from 0.1 to 0.2. The

total number of trees in the RF ensemble is fixed at 5,000, as increasing it to 10,000 yields no

significant improvement. For GBRT, we also consider three tuning parameters: the depth of

the trees, the number of trees, and the learning rate. The learning rate is adjusted between

0.001 and 0.5, while the depth of each tree varies from 1 to 6, reflecting GBRT’s preference

for shallower trees compared to RF. The maximum number of trees is set to 100, with most

experiments halting training well before reaching this limit.

We repeat the experiments from Section 3.1, this time generating an additional set of noos

out-of-sample observations to evaluate predictive performance.15 As illustrated in Figure 6,

RF demonstrates its ability to learn weak signals when R2 = 5%, with more than half of the

probability mass located to the left of the y-axis. In contrast, GBRT struggles at this signal

strength level. Sparsity does not appear to significantly impact either method. Nonetheless,

both methods markedly outperform the zero predictor as R2 increases to 50%.

A possible explanation for GBRT’s performance pattern could be an inherent ℓ1-like

regularization in its boosting approach. This hypothesis draws support from the work of

Efron et al. (2004), which demonstrates a parallel between boosting and the Lasso path in

linear regressions. To substantiate this conjecture, we examine the number of active variables

(those with a non-zero importance score) from both tree methods under the benchmark case.

For RF, the average count of active variables is 300. This mirrors that of Ridge regression.

Conversely, GBRT demonstrates a significantly lower count of active variables, with an

average of 27.9, aligning more with the variable selection feature of Lasso. Based on our

theoretical findings that Ridge outperforms Lasso in weak signal scenarios, we can infer that

RF is more adept than GBRT in settings characterized by low signal strengths.

3.2.2 Simulations with Neural Networks

Next, we study fully-connected feed-forward NNs, following the stylized architectures as

outlined by Gu et al. (2020). For this exploration, we revisit the benchmark case where

n = 500, p = 300, R2 = 5%, and q = 0.2. Such parameters lead to an input layer in the NN

configured with 300 neurons. Our specifically chosen architecture features a neural network

with a single hidden layer, which includes 16 neurons.

15We set noos ≈ [τ−3] to meet the assumption in Proposition 1.
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Figure 6: Simulation Results for RF and GBRT in Linear DGPs
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Note: The histograms depict the relative prediction error, pn−1τ−2n−1
oos

∑
i∈OOS((yi− ŷi)

2−y2i ), across 1, 000

Monte Carlo samples. We consider RF and GBRT under the setting n = 500, q = 300, noos = 10, 000, with

(R2, q) = (5%, 0.2), (5%, 0.8), and (50%, 0.2). The red dashed line marks the y axis for reference.

The training process of these NNs often incorporates a sophisticated mix of optimization

and regularization techniques, crucial for enhancing performance.16 To specifically assess

the influence of ℓ1 and ℓ2 regularization on NN performance, we will minimize potential

interference from other factors. Therefore, our implementation will involve using plain SGD

as the sole optimization technique, coupled exclusively with either ℓ1 or ℓ2 penalties, and

deliberately avoiding additional optimization enhancements.17 This approach is designed to

isolate and clarify the specific contributions of these regularization techniques to NN perfor-

16Key methods include stochastic gradient descent (SGD) with Adam (Kingma and Ba (2014)), which
expedites the optimization process through an adaptive learning rate. Early stopping, as discussed in Good-
fellow et al. (2016), is employed to prevent overfitting by halting training when validation performance starts
to decline. Dropout (Srivastava et al. (2014)) is utilized for better generalization, achieved by randomly de-
activating neurons. Batch normalization (Ioffe and Szegedy (2015)) aids in stabilizing the training process.
Moreover, ensembling over various random seeds is implemented to reduce the variances in model outputs.
Furthermore, the integration of ℓ1 and ℓ2 penalties with these techniques helps regulate the NN parameters.

17Consequently, the training process hinges primarily on two tuning parameters: the learning rate and
the regularization parameter. The learning rate is set to fluctuate within the interval [0.001, 0.015], a range
established based on insights from the validation sample. To efficiently control computational costs, we have
adopted a strategy of jointly tuning the learning rate and the number of epochs, while keeping the product
of these two factors constant and fixing the batch size in SGD at 100. This method is designed to achieve a
balanced compromise, optimizing both the efficiency of the learning process and the stability of the resulting
model. On the other hand, the choice of regularization parameter is contingent upon the DGPs and the
specific regularization technique employed.
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mance, albeit at the expense of not fully exploiting the NN’s potential. Additionally, given

the conceptual similarities between early stopping and shrinkage methods—specifically, early

stopping effectively shrinks parameter values towards their initial, smaller magnitudes—we

will also conduct a comparative analysis of the effects of early stopping and ℓ2-regularization.

To evaluate the performance of NNs, we analyze their behavior with three specific mono-

tonic nonlinear functions: Tangent (tan(x)), Cubic (x3), and Sinh ((ex + e−x)/2). The

histograms in Figure 7 display the relative prediction errors of NNs when they are applied

with various regularization techniques, including early stopping, ℓ2 regularization, and ℓ1

regularization. It is observed that both ℓ2 regularization and early stopping are effective in

detecting and leveraging weak signals, evidenced by the majority of the probability mass

of their histograms being positioned on the negative side of the y-axis. In contrast, under

ℓ1 regularization, there is a notable decline in performance. This observation aligns with

expectations based on our theoretical findings concerning linear models.

4 Empirical Analysis of Six Economic Datasets

In this section, we demonstrate the practical relevance of our theoretical insights by applying

seven machine learning methods—Ridge, Lasso, OLS/Ridgeless, RF, GBRT, NNs with both

ℓ1 and ℓ2 penalties—across six datasets. These datasets are sourced from three fields: mi-

croeconomics, macroeconomics, and finance, with two datasets representing each field. Five

of these datasets are similar to those utilized by Giannone et al. (2022), with updates to

the latest available data wherever feasible. Additionally, we incorporate an updated dataset

from Gu et al. (2020) for our second finance example, which offers a more comprehensive

coverage of firm characteristics than the analogous example discussed by Giannone et al.

(2022). There is a notable difference between our empirical strategy and that of Giannone

et al. (2022), which focuses on estimating a parametric model using a Spike-and-Slab prior

within a Bayesian framework. In contrast, our study, aligning more closely with Gu et al.

(2020), places a greater emphasis on the comparative analysis of various methods.

At the outset of each empirical exercise, we face a variety of decisions regarding our

implementation strategy. These include defining the in-sample and out-of-sample periods,

opting for either a rolling window or an expanding window approach, selecting a cross-

validation procedure, and deciding on the normalization of covariates.18 We delegate these

18It is crucial to normalize covariates before employing machine learning methods. This step standardizes
the scales of covariates, facilitating regularization and enhancing the convergence of optimization algorithms.
To avoid forward-looking bias, we ensure that the normalization of covariates is conducted using their
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Figure 7: Simulation Results for NNs in Nonlinear DGPs
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Note: The histograms depict the relative prediction error, pn−1τ−2n−1
oos

∑
i∈OOS((yi − ŷi)

2 − y2i ), across

1, 000 Monte Carlo samples. These histograms pertain to NNs in scenarios where n = 500, p = 300, q = 0.2,

noos = 10, 000, and R2 = 5%. The focus is on three different regularization techniques: early stopping,

ℓ1-penalty, and ℓ2-penalty, and the experiments encompass three nonlinear models: Tan, Cubic, and Sinh.

choices to the frameworks established by Giannone et al. (2022) and Gu et al. (2020), with

the intention of minimizing degrees of freedom to enhance the robustness, comparability,

and reproducibility of our findings. In the application of each machine learning method, the

selection of an appropriate grid for tuning parameters is essential. This crucial step requires

balancing performance optimization with computational efficiency. Finer and wider grids,

while potentially enhancing performance, also increase computational demands. Appendix

B provides details regarding our model configuration and tuning parameter selection.

Below we present the empirical findings derived from six distinct datasets, each analyzed

and reported separately. The primary summary statistics, R2
ooss, are collected in Table 2.

Additionally, we include variable importance plots in Figure 8 as supplementary evidence

respective in-sample mean and standard deviation, thereby maintaining the validity and integrity of our
predictive analysis.
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to decode the performance of different methods. The notion of variable importance is not

universally established and varying across different contexts. Our approach diverges from

the well-known method associated with RF, originally presented in Breiman (2001). In our

analysis, variable importance is quantified as the reduction in R2
oos resulting from setting

each variable, one at a time, to zero (its mean value post-normalization), with this metric

normalized across all variables. For each method, the most significant variable, as per this

definition, is assigned a value of one, and a color gradient is employed to visually represent

the relative importance of each variable.

Table 2: Out-of-sample R-squared Values in Empirical Studies

Ridge Lasso OLS/Ridgeless RF GBRT NN(ℓ2) NN(ℓ1)

Finance 1 0.80 −12.19 −81.08 4.38 −14.21 1.41 −10.31
Finance 2 0.19 0.10 −1.25 0.10 −0.30 0.26 0.14
Macro 1a 15.29 15.40 −1375 24.37 16.44 16.94 19.09
Macro 1b 3.49 3.69 −2939 8.45 1.11 7.09 5.39

Macro 2
6.58 −14.58 −837 9.65 1.28 4.00 1.92
(4.83) (43.74) (854) (9.19) (14.04) (18.42) (13.36)

Micro 1
0.48 −1.01 −13198 −9.53 −5.07 0.49 −6.77
(0.84) (2.01) (12479) (3.82) (6.60) (0.27) (17.87)

Micro 2a
26.27 20.37 −12729 27.80 16.44 23.87 23.37
(7.50) (6.41) (9213) (5.27) (3.40) (10.07) (10.09)

Micro 2b
1.89 -3.43 -14724 0.81 -6.45 1.11 -1.73
(3.09) (5.25) (10506) (2.43) (6.83) (2.20) (5.09)

Note: This table reports R2
oos values, presented in percentages, for Ridge, Lasso, OLS/Ridgeless, RF, GBRT,

and NNs with respective ℓ1 and ℓ2 penalties, across six empirical studies spanning Finance, Macroeconomics,

Microeconomics. For the first example in Macroeconomics and the second example in Microeconomics, two

benchmark models are considered for comparison. Where standard deviations are applicable, they are

provided in parentheses.

4.1 Finance 1: Market Equity Premium

In the first analysis, we focus on predicting market equity returns using a dataset of finan-

cial and macroeconomic indicators compiled by Welch and Goyal (2007).19 This dataset

comprises 16 predictors and includes 74 annual observations, covering a period from 1948

to 2021. Despite Welch and Goyal (2007) reporting a consistently negative R2
oos for this

dataset, several other studies, such as those by Campbell and Thompson (2007), Ferreira

19The data was sourced from Amit Goyal’s website, accessible at https://sites.google.com/view/agoyal145,
and processed using the methodology provided by Giannone et al. (2022).
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Figure 8: Variable Importance Plots
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Note: This figure illustrates the variable importance across six empirical studies, using color gradients to

show the relative reductions in R2
oos by each covariate. For the first example in Macroeconomics and the

second example in Microeconomics, we only present the cases with a more complex benchmark model.
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and Santa-Clara (2011), Rapach et al. (2010), Kelly and Pruitt (2013), and Kelly et al.

(2023), have developed forecasting strategies resulting in economically meaningful R2
oos val-

ues. These modest R2
ooss translate into significant economic gains through simple market

timing strategies, as extensively discussed in these aforementioned studies.

We revisit this exercise. The procedure involves selecting an expanding window of in-

sample data, using cross-validation for optimal tuning parameter selection, and then refitting

the model for predictions on a test sample. Following the empirical framework of Giannone

et al. (2022), the initial training set spans from 1948 to 1964, with the model’s performance

evaluated using the 1965 data. Subsequently, data from 1965 is added to the training set,

and the process is repeated, with the next model tested on the 1966 data. This procedure is

conducted 57 times in total, progressively incorporating an additional year’s data into the

training set and shifting the test sample forward by one year each time.

We evaluate R2
oos from 57 different predictions.20 Despite these predictions stemming

from 57 distinct models, the empirical results, as detailed in Table 2, corroborate our the-

oretical predictions. Specifically, Ridge regression records an R2
oos of 0.80%, significantly

outperforming Lasso’s -12.19%. With the smallest sample size being 17—just sufficient to

run OLS with 16 predictors—OLS produces a highly negative R2
oos of -81.08%. In compar-

ison, the NN with an ℓ2 penalty, NN(ℓ2), attains an R
2
oos of 1.41%, whereas its counterpart

with an ℓ1 penalty, NN(ℓ1), shows a lower R2
oos of -10.31%. Our RF achieves the highest

R2
oos of 4.38% while GBRT show performance similar to Lasso, with an R2

oos of -14.21%. As

indicated in Figure 8, Ridge and NN(ℓ2) appear to assign similar weights to these covari-

ates. The leading covariate, eqis—the equity issuing activity ratio —is closely followed in

importance by the dividend-price ratio, d/p.

4.2 Finance 2: Cross-Section of Expected Returns

In our second analysis, we build upon the predictors utilized by Gu et al. (2020) for pre-

dicting equity returns, extending the data up to December 2021. We analyze monthly total

individual equity returns from the CRSP database for all firms listed on the NYSE, AMEX,

and NASDAQ. The average number of stocks analyzed per month exceeds 6,200. Our dataset

starts from March 1957, and we compile a total of 920 covariates to predict future returns.21

20In this example, R2
oos = 1−∑2021

t=1965(yt − ŷt)
2/

∑2021
t=1965(yt − ȳt)

2, where ȳt =
∑t−1

s=1948 yt/(t− 1948).
21Due to the large scale of the dataset and the resulting computational limitations, we have adopted a two-

fold cross-validation approach for this analysis. Additionally, a more restrictive grid selection is employed for
the Lasso and Ridge models. Specifically, for Ridge, log(λ) is set to range between 6 and 7, while for lasso, it
varies from -3.4 to -2.4. The optimal tuning parameters fall within the central range of these specified grids.
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Following Gu et al. (2020), our initial training phase utilizes data from 1957 to 1986, followed

by performance evaluation using 1987 data. This process is repeated 35 times, with each

iteration expanding the training sample by an additional year and shifting the evaluation

period forward by one year.

Table 2 compares the model performance in terms of R2
oos, where the zero estimator

serves as the benchmark, according to the recommendation by Gu et al. (2020).22 In this

case, NN(ℓ2) emerges as the leading model, closely followed by Ridge, achieving R2
oos of 0.26%

and 0.19%, respectively. These models dominate NN(ℓ1) and Lasso, which records an R2
oos

of 0.14% and 0.10%. The performance of the OLS continues to be underwhelming in this

exercise. As for the tree-based models, RF demonstrates superior performance compared to

GBRT. The former achieves a slightly positive R2
oos, whereas the latter exhibits a slight nega-

tive R2
oos. Despite their inherent ability to capture non-linear relationships and interactions,

the effectiveness of tree models is somewhat limited in scenarios characterized by low signal

strength. Figure 8 reveals an intriguing pattern: there appears to be a relationship between

the relatively stronger performance among these pairs — Ridge vs Lasso, RF vs GBRT, and

NN(ℓ2) vs NN(ℓ1) — and their respective patterns of sparsity in variable importance plots.

Models with denser variable weights outperform those with sparser ones

To illustrate the economic significance of these relatively low R2
ooss, we adopt the approach

outlined by Gu et al. (2020) and devise a stock selection portfolio strategy. This strategy

involves going long on the top 10% and shorting the bottom 10% of stocks, sorted based on

their predicted returns for the upcoming month, with equal weighting applied to each stock

every month. In terms of performance, NN(ℓ2) achieves the highest Sharpe ratio at 2.13,

indicating its superior risk-adjusted returns. This is closely followed by Ridge regression

with a Sharpe ratio of 1.64. NN(ℓ1) also demonstrates commendable performance, yielding

a Sharpe ratio of 1.55. GBRT exhibits the least impressive performance, with the lowest

Sharpe ratio of 0.80, which aligns with its underwhelming predictive performance.

4.3 Macro 1: Macroeconomic Forecasting

The prediction of US macroeconomic activity using a wide range of predictors has been a

topic of significant interest since its initial exploration by Stock and Watson (2002). In our

current study, we utilize the FRED-MD dataset, compiled by McCracken and Ng (2016), to

forecast the monthly growth rate of US industrial production (IP). This dataset includes 119

potential predictors, covering a diverse array of macroeconomic indicators, and extends from

22In this pooled regression setting, we define R2
oos = 1−∑

i,t∈OOS(yi,t − ŷi,t)
2/
∑

i,t∈OOS y
2
i,t.

36

https://research.stlouisfed.org/econ/mccracken/fred-databases/


February 1960 to December 2019. Our evaluation methodology aligns with the prediction

procedure outlined by Giannone et al. (2022). We begin by training these machine learning

models using data from February 1960 to December 1974 and then evaluate their performance

on data from the subsequent year. This process is repeated 45 times, with each iteration

expanding the training dataset by one year (12 observations) and similarly shifting the

evaluation period forward. We adhere to the guidelines set by McCracken and Ng (2016) for

transforming the covariates. Additionally, we follow their prescribed approach for managing

data quality issues, which involves the removal of outliers and the filling of missing data.

We initiate our analysis with a benchmark model that includes only an intercept term. In

this scenario, all machine learning models significantly outperform this benchmark, achieving

R2
oos values ranging from 14.13% to 24.37%.23 On the other hand, the OLS model, somewhat

expectedly, overfits the data, resulting in a negative R2
oos of -16. This outcome suggests the

presence of strong signal strength within a high-dimensional set of covariates. The benchmark

model’s lack of competitiveness aligns with our expectations, particularly when considering

the temporal dependence prevalent in macroeconomic time series. Therefore, a more suitable

benchmark model should incorporate lagged values of IP growth.

We thereby propose an alternative benchmark that incorporates an Autoregressive (AR)

component. Within each training sample, we fit an AR model to the IP growth, selecting

its order based on the AIC. The residuals from this model then serve as our prediction tar-

get. As discussed in Section 2.8, this approach effectively combines the predictions from the

AR model with those from our machine learning models, yielding a hybrid output out-of-

sample.24 Consequently, the new benchmark for comparison becomes the direct use of the

AR model’s predictions, where adding zero implies no alteration to the prediction. In this

alternative setup, the comparison of R2
oos values reveals a pattern somewhat associated with

scenarios of weak signal strength: NN(ℓ2) and RF emerge as the top performers, achiev-

ing R2
oos values of 7.09% and 8.45%, respectively. Following closely are NN(ℓ1) at 5.39%,

while GBRT lags with a considerably lower R2
oos of 1.11%. This disparity in performance

appears associated with the findings in Figure 8, which illustrates GBRT’s tendency towards

sparser models in comparison to their counterparts. In this case, linear models, specifically

23In this case, the definition of R2
oos is similar to how it is defined in the Finance 1 case.

24In implementing advanced machine learning models with a hybrid benchmark linear component Wγ, we
adopt a methodology that parallels the one used in Eq. (14). This approach entails a DGP assumption that
MW y is a general function of MWX. This assumption plays a critical role in streamlining the implementa-
tion of these machine learning methods, ensuring that the results are directly comparable to those obtained
in linear settings. However, it is important to note that this DGP assumption is generally not equivalent to
the assumption that y −Wγ is a function of X.
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Ridge and Lasso, demonstrate comparable performance, achieving R2
oos values of 3.49% and

3.69%, respectively. This pattern suggests that the primary challenges associated with signal

weakness are most evident from nonlinear features.

4.4 Macro 2: Economic Growth Across Countries

Next, we explore a dataset originally compiled by Barro and Lee (1994), which includes 60

socio-economic, institutional, and geographical covariates across 90 countries. This dataset

is utilized for predicting long-term economic growth, specifically measured by the growth

rate of GDP per capita from 1960 to 1985. A pivotal aspect of this analysis involves testing

a key prediction of the classical Solow-Swan-Ramsey growth model, which concerns the effect

of an initial (lagged) GDP per capita level on subsequent growth rates. By incorporating the

logarithm of each country’s GDP per capita in 1960 alongside a constant term, our prediction

model includes a total of 62 potential covariates.

Belloni et al. (2013b) implement the Square-root-Lasso technique in their regression,

anticipating sparsity among the control variables. This methodology results in a remarkable

sparse model, characterized by the inclusion of a singular control variable: the log of the

black market premium, a measure of trade openness. In contrast, Giannone et al. (2022)

employ a Bayesian approach with a spike-and-slab prior, concluding that a dense model,

which includes all covariates, yields the best log-predictive score.

In our predictive analysis, we adopt the same empirical methodology outlined by Gi-

annone et al. (2022). We begin by randomly selecting half of the data samples for model

estimation and then proceed to assess the performance of these models using the remaining

samples. This process is repeated 100 times. The average out-of-sample R2
oos from these

100 repetitions, in comparison to a benchmark model that includes only the intercept, is

presented in Table 2, accompanied by their standard deviations, provided in parentheses.2526

Our empirical findings align with those of Giannone et al. (2022), indicating a similar

pattern that dense models, specifically Ridge, RF, and NN(ℓ2), exhibit superior performance

compared to their sparse counterparts, such as Lasso, GBRT, and NN(ℓ1). The limited

sample size appears to disadvantage complex NN models, rendering them less effective than

the simpler Ridge regression. RF demonstrates strong performance, achieving an R2
oos of

25Here R2
oos = 1−∑

i∈OOS (yi − ŷi)
2/

∑
i∈OOS (yi − ȳ)2, where ȳ is in-sample average of yi.

26We may also consider a benchmark model with GDP per capita in 1960 included, as predicted by
theory. Interestingly, enforcing the inclusion of this variable in the model leads to a reduction in predictive
performance across all models. In essence, adding this variable leads to a negative R2

oos compared to the
model that includes only an intercept.
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9.65%, although it concurrently introduces a twofold increase in the variability of R2
oos values

compared to those based on Ridge regression. The variance of Lasso is pronounced, driven by

a handful of extreme values; excluding these anomalies, its R2
oos improves to -0.56%. Across

all evaluated models, the black market premium consistently emerges as the most influential

variable in Figure 8, aligning with the sole variable selected by Belloni et al. (2013b).

4.5 Micro 1: Crime Rates across US States

Our first microeconomic case revisits the study by Donohue and Levitt (2001), which analyzes

the effect of the legalization of abortion following the Roe vs. Wade decision in 1973 on the

decline in crime rates. Their dependent variable is the change in log per-capita murder rates

from 1986 to 1997 across 48 states, with a total of 576 observations. This variable is then

regressed on the effective abortion rate. To account for potential confounding factors, Belloni

et al. (2013a) expanded the control set used by Donohue and Levitt (2001) by including

interactions and higher-order terms, resulting in a comprehensive set of 284 variables.

When Belloni et al. (2013a) employ the Lasso method for the selection of control variables

for murder rate in their analysis, they discover that none of the control variables were

selected.27 In a similar vein, Giannone et al. (2022) observe from their Bayesian analysis of

this regression that the posterior density is concentrated on very low probability values of

the slab component, which suggests that the regression model is sparse with high likelihood.

In a recent study, Guo and Toulis (2023) employ a randomization test to assess the null

hypothesis that all regression coefficients are zero. Their test fails to reject this hypothesis.

We employ the same benchmark model and sample splitting strategy outlined by Gi-

annone et al. (2022). For the initial estimation, we use data spanning from 1986 to 1989,

covering all states. Additionally, we incorporate data from a randomly selected 50% of the

states for the period from 1990 to 1997. The remaining 50% of the states from 1990 to

1997 are set aside for evaluating the model. This procedure is iterated 8 times, with each

iteration expanding the training sample to include one additional year of data, starting from

1990, while correspondingly adjusting the evaluation sample to reflect this change. 28 The

entire sequence is carried out 13 times in total, yielding 8 × 13 = 104 distinct training and

evaluation samples. We report the mean and standard deviation of R2
ooss in Table 2.

27Belloni et al. (2013a) proposes a double-Lasso estimator to make inference on the effect of abortion on
murder rate. Part of their procedure involves a Lasso regression of murder rate on control variables. It is
important to note that they use differences as the dependent variable, but observe no substantial changes
when using levels instead.

28Here and after, we calculate R2
oos in the same way as Finance 2 case.
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Our findings reveal that NN(ℓ2) exhibits a slight edge over Ridge regression, attaining a

marginally superior R2
oos of 0.49%, compared to Ridge’s 0.48%. Apart from these two models,

all other models tested demonstrate negative R2
oos values, which suggests the presence of very

weak signals in the data. Our argument posits that the scarcity of significant signals observed

in the existing literature is likely attributable to signal weakness. The empirical evidence

does not definitively categorize the underlying DGP as either dense or sparse. It may simply

be that no individual signals are particularly strong. While in such scenarios, a sparse model

could seem like a reasonable approximation, our results reveal that the cumulative predictive

power of weak signals, though individually insubstantial, is collectively non-negligible. This

is corroborated by Figure 8, where we observe that both Ridge and NN(ℓ2) assign small

weights to nearly all covariates. Although RF follows a similar pattern, our simulations

indicate that it is more adversely affected by the weak signals compared to the other models.

4.6 Micro 2: Eminent Domain and Economic Outcomes

In our final study, we concentrate on a regression setting pertinent to eminent domain.

Previous research by Chen and Yeh (2012), and subsequently Belloni et al. (2012), employ

instrumental variable regressions to understand the impact of eminent domain on economic

outcomes. Differing from their broader focus, our study aligns closely with Giannone et al.

(2022), who concentrate on the first stage of this regression. This involves predicting pro-

plaintiff decisions in takings law cases based on the characteristics of judicial panels. Their

dataset includes 138 potential covariates and a total of 312 observations.

Adopting their strategy, we estimate the model using data spanning from 1979 to 1984

for all circuits. This is augmented with data from 1985 to 2004, selected randomly for 50%

of the circuits. We assess the model’s performance with 1985 data from the circuits not

included in the training set. Since the period from 1985 to 2004 encompasses 20 years,

we repeat this procedure 20 times. Each repetition involves a new random selection of

half of the circuits and the sequential addition of one year’s data to the training set, while

correspondingly updating the evaluation set. This entire process is independently executed

five times, resulting in a total of 20× 5 = 100 distinct training and evaluation datasets.

In our analysis, we initially consider a benchmark model that includes only an inter-

cept. In this setting, all machine learning models successfully identify predictive signals, as

evidenced by significant R2
ooss. RF emerges as the top performer with an R2

oos of 27.63%,

with other models also showing strong results, albeit GBRT being an exception. However,

the scenario shifts markedly when the benchmark model is expanded to include not only
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the intercept but also additional variables. These include a dummy variable for the absence

of cases in a given circuit-year and the number of takings appellate decisions, bringing the

total to three covariates. Against this simple benchmark, the incremental predictive power

contributed by the remaining covariates diminishes dramatically. Ridge’s R2
oos falls to 1.89%,

that of RF to 0.81%, and NN(ℓ2) to 1.11%, with the R2
oos of all other methods turning nega-

tive. Intriguingly, as highlighted in Figure 8, these results seem to associate with the distinct

approaches these methods take in weighting covariates. Ridge, RF, and NN(ℓ2) assign small

weights uniformly across all covariates. Meanwhile, NN(ℓ1) also opts for a model with a

considerable number of coefficients, resulting in a performance that slightly surpasses both

Lasso and GBRT, which favor more sparse models in this case.

5 Conclusion

In this paper, we scrutinize the performance of machine learning techniques in contexts

characterized by low signal-to-noise ratios, a situation frequently observed in economics and

finance. Our theoretical analysis indicates that while Lasso is often considered a modern

alternative to traditional ordinary least squares, its application in these areas should be

approached cautiously, primarily due to its lessened effectiveness with weak signals.

Our research complements and expands upon the arguments made by Giannone et al.

(2022), who cast doubt on the prevalence of sparsity in economic datasets. We take this

debate further by showing that it is signal weakness, not necessarily the absence of sparsity,

that more significantly contributes to the observed limitations of Lasso in economic applica-

tions. Furthermore, the lack of significant variables in empirical studies may be attributed

more to signal weakness than to the sparse nature of the underlying DGP.

Our analysis also reveals a marked difference in the performance of Ridge regression. No-

tably, Ridge demonstrates superior resilience and effectiveness in these environments. Our

theoretical findings are further substantiated by simulation studies encompassing a range of

advanced machine learning techniques, including trees and neural networks. These experi-

ments consistently reveal that algorithms designed to exploit sparsity tend to underperform

in environments where signals are inherently weak. Broadly, our findings emphasize the im-

portance of a nuanced, context-sensitive application of machine learning techniques, adapting

to the distinctive data characteristics encountered across various domains.
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Abstract

Appendix A presents additional results from Monte Carlo simulations. Appendix

B provides an in-depth discussion on the selection of tuning parameters. Appendix C

explores the theoretical properties of Lasso and Ridge in the context of extreme sparsity.

Appendix D contains the mathematical proofs of the main theorems presented in the

paper. Appendix E is devoted to the exposition of technical lemmas along with their

corresponding proofs.

A Supplemental Simulation Results

A.1 Additional Simulations with Fixed Tunings

In the simulation for the main paper, cross-validation is applied for Ridge and Lasso. In

this section, we verify our theories with manually selected λn. We also experiment with two

sample sizes, n = 500 and n = 2, 500, while maintaining p/n = 3/5. We fix q = 0.2 and

R2 = 5%. In the case of Ridge regression, we set λ as 0.5, 1 and 2, where λ = 1 corresponding

to the optimal tuning. The histograms of relative prediction error are presented in Figure

A1.
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Figure A1: Simulation Results for Ridge with Fixed Tuning Parameters
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Note: The histograms depict the relative prediction error ∆(β̂r(λn)) following equation (8) across 1, 000

Monte Carlo samples. We consider two different sample sizes (n = 500 and n = 2, 500) and examine three

different values of λ, where λ = 0.5, 1, and 2. Notably, λ = 1 represents the optimal tuning parameter. The

red dashed line indicates the values of α∗.

Several noteworthy observations can be made from these histograms. First, across all

plots, the probability mass is concentrated around the red vertical line. As the sample size

increases from 500 to 2,500 (and dimension increases from 300 to 1,500), the histograms

become increasingly concentrated. This aligns with our theory, which predicts that the

relative prediction error converges in probability to the limit α∗ as the sample size grows.

Second, the value of α∗ corresponding to the optimal tuning parameter λ = 1 is the smallest.

This is because the optimal Ridge estimator achieves the smallest prediction error. Moreover,

almost all the probability mass corresponding to the optimal Ridge estimator is situated on

the negative side of the x-axis, indicating that this estimator outperforms the zero estimator

with high probability. Third, when λ = 0.5, it results in the worst performance, with a large

portion of the probability mass on the positive side of zero. In contrast, for λ = 2, α∗ gets

closer to zero, and the variance of the relative prediction error decreases. This behavior is

due to the increasing amount of penalization, which ultimately drives the estimator towards

zero, and in turn, α∗ towards zero as well.

In contrast to the results obtained for Ridge regression, our theoretical framework does

not provide a precise error limit for Lasso. Instead, Theorem 4 offers high probability bounds

on relative prediction errors. Figure A2 displays histograms of these errors for various tuning
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Figure A2: Simulation Results for Lasso with Fixed Tuning Parameters
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Note: The histograms depict the relative prediction error ∆(β̂l(λn)) following equation (8) across 1, 000

Monte Carlo samples. We consider two different sample sizes (n = 500 and n = 2, 500) and examine three

different values of Cλ. The two dashed lines in each figure indicate the values of cα and Cα that are solutions

to (10).

parameters and sample sizes, accompanied by two red vertical lines in each plot representing

the lower and upper bounds, cα and Cα.

These plots yield several interesting findings. First, as the sample size increases, we

observe that the probability mass becomes more concentrated and largely falls within the

intervals defined by the bounds. Second, regardless of the tuning parameter values, Lasso

consistently underperforms the zero estimator in almost all samples when the sample size is

large. Third, as the tuning parameter increases (indicated by a decrease in Cλ), both the

lower and upper bounds approach zero. This behavior is a consequence of the increased

regularization, which, in turn, steers the estimator closer to zero. In the end, Lasso becomes

identical to the zero estimator.

A.2 Out-of-sample R2

Continuing our investigation in the main text, we conduct an experiment to analyze R2
oos

based on the optimal Ridge. Proposition 1 describes the expected asymptotic behavior of

R2
oos. To empirically test this, we implement the optimal Ridge, setting λ = 1, on a training

dataset comprising n = 500 observations. We then calculate R2
oos based on predictions for a

3



separate test dataset of size noos = 10, 000. The comparative analysis between the population

R2, the empirically estimated R2
oos, and the theoretically derived limit of R2

oos is illustrated

in Figure A3. For a clearer visual presentation, we apply a logarithmic transformation

to the y-axis. We vary τ to compare against a range of population R2 values from 0.5%

to 10% on the x-axis. The red line represents the average R2
oos over 1, 000 Monte Carlo

simulations. Additionally, we draw boxplots to describe the distributions of R2
oos across

these simulations. The theoretical limit, expressed as p−1nθ2(R
2)2, is traced by the blue

line, and the green line illustrates the population R2, which would align with a 45-degree

line on a standard scale. Notably, in this weak signal setting, the population R2 significantly

surpasses the empirically achievable R2
oos. Furthermore, the close alignment between the red

and blue lines, particularly for scenarios with small R2 values, substantiates our theoretical

predictions.

Figure A3: Out-of-Sample R2 for Optimal Ridge in Linear DGPs

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

0.01%

0.10%

1.00%

10.00% R2
oos

θ2(R
2)2

R2

Note: The figure presents boxplots showing the distributions of R2
oos for optimal Ridge regression (λ = 1)

over 1, 000 Monte Carlo repetitions, with n = 500, p = 300, q = 0.2, and noos = 10, 000. We explore a

range of population R2 values, from 0.5% to 10% in increments of 0.5% by adjusting τ . The plot features

red, blue, and green lines to represent the average R2
oos over Monte Carlo samples, the theoretical limit as

given by Proposition 1, and the population R2. In this plot, we employ a logarithmic scale for the y-axis.

Without the logarithmic transformation, the green line would align with a 45-degree line. Additionally, the

lower boundaries of the boxplots surpass the axis limits in instances where the R2
oos values are negative.

4



A.3 Why Lasso Fails?

A plausible explanation for the Lasso’s suboptimal performance with weak signals is its diffi-

culty in distinguishing between genuine and spurious signals. The failure to identify genuine

weak signals has a minor impact on Lasso’s performance relative to the zero estimator, which

does not utilize any true signals. Hence, the primary challenge for the Lasso lies in its failure

to adequately filter out irrelevant signals. This issue could be addressed with a sufficiently

large tuning parameter. However, our theory indicates that only when the penalty is so

substantial that the Lasso effectively becomes equivalent to the zero estimator does it apply

an adequate penalty.

To empirically explore this issue, we quantify Type I and Type II errors in simulations

of Lasso’s selection relative to its tuning parameter λn. The findings are presented in Figure

A4. Considering our previous discussion, Type I errors represent a significant cost for Lasso.

Indeed, a considerable portion of the variables selected by Lasso are incorrectly deemed

genuine when λn is small. As λn increases, Type I errors decrease, enhancing Lasso’s perfor-

mance. Meanwhile, Type II errors persist and eventually converge to the number of non-zero

betas in the DGP.

Figure A4: Lasso’s Type I and Type II Errors
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Note: The plots compare average Type I and Type II errors of Lasso using the linear DGP following equation
(1) over 1, 000 Monte Carlo samples. Two population R2 are considered: R2 = 5% (left panel) and R2 = 50%
(right panel). The horizontal axis of each plot represents the logarithm of λn, spanning a range from 0 to 1.
The vertical axis measures the count of errors incurred while testing the null hypothesis H0,i : βi = 0.
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A.4 Robustness Check

In our subsequent series of experiments, we intentionally deviate from the assumptions orig-

inally established during the development of our theoretical framework. This deviation is

aimed at evaluating the robustness and generalizability of our theoretical predictions beyond

their premises and initial parameters. To facilitate this evaluation, we introduce specific mod-

ifications to the baseline configuration along three key dimensions: First, we adjust (R2, q),

exploring more extreme sparsity levels and reducing signal strength accordingly compared

to the settings in the main text. Second, we increase the ratio p/n to 2 by increasing p

while maintaining n, making it more challenging for both Ridge and Lasso to capture the

underlying signals. Third, we modify the distribution of Z from standard Gaussian to a t-

distribution characterized by four degrees of freedom, and with a mean of zero and a variance

of one. In addition, we introduce heteroscedasticity into the error distribution, following the

configuration outlined by Giannone et al. (2022). The error term’s variance is defined by

the function σ2 exp(αX⊤
i δ/

√∑n
i=1(X

⊤
i δ)

2/n) with α = 0.5. Here, Xi represents the i-th row

of X. σ serves as a scaling parameter to standardize the variance and match σ2
ε = 1. The

vector δ is a p × 1 vector with zero elements in the same positions as the zero elements of

β0, while non-zero elements are drawn from a standard Gaussian distribution.

Table A1 compare the summary statistics for various cases under consideration. In Case

I, when q is small, the performance of the Lasso estimator improves relative to the baseline

scenario (reproduced from Table 1 for ease of comparison). This improvement is evident at

R2 = 5% for all levels of q, as the Q1 values become negative, indicating that Lasso surpasses

zero in predictive accuracy for a larger proportion of Monte Carlo repetitions. However, as

R2 is further reduced to 2%, Lasso once again becomes falls below the performance of zero.

In contrast, Ridge’s performance remains largely unaffected by changes in sparsity levels. As

expected, its performance deteriorates in finite samples as the signal strength weakens (i.e.,

as R2 decreases). Nonetheless, Ridge continues to outperform Lasso, although its relative

advantage over the zero estimator diminishes. The theoretical support for these observations

is discussed in Appendix C. In Case II, we observe the increased ratio of p/n does not affect

our conclusion. Case III demonstrate the robustness of our theoretical findings, as it aligns

closely with the baseline scenario despite variations in distributional assumptions.
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Table A1: Robustness Analysis of Ridge and Lasso in Alternative DGPs

Lasso Ridge
q R2 (%) Q1 Q2 Q3 #Zero Q1 Q2 Q3 #Zero

0.20 5% -0.127 0.000 0.521 360 -0.992 -0.501 -0.129 97
0.10 5% -0.871 0.000 0.187 327 -0.981 -0.475 -0.077 113
0.10 2% 0.000 0.000 3.435 493 -0.622 0.000 0.440 237

Case I 0.05 5% -2.688 -0.305 0.000 255 -1.037 -0.387 0.000 130
0.05 2% 0.000 0.000 2.948 473 -0.642 0.000 0.426 238
0.02 5% -6.542 -2.050 0.000 215 -1.304 -0.230 0.000 149
0.02 2% 0.000 0.000 1.695 432 -0.605 0.000 0.625 254

Case II 0.20 5% 0.000 0.000 3.228 470 -0.768 -0.416 0.000 183
Case III 0.20 5% 0.000 0.000 0.591 392 -0.848 -0.384 0.000 129

Note: The table illustrate the summary statistics of relative prediction error ∆(β̂(λ̂K−CV
n )) for Ridge and

Lasso based on 1,000 Monte Carlo samples. We explore several distinct DGPs, each involving the alteration

of a specific condition. In Case I, we try a series of different values of R2 and q. In Case II, we adjust n/p

to 0.5. In Case III, we introduce t-distributed covariates with heterogeneous variance of ε. The benchmark

DGP adheres to the following specifications: n = 500, p = 300, p/n = 3/5, and complies with Assumptions

1 and 2. 10-fold cross-validation is used throughout these experiments.

B Choice of Tuning Parameters

Table B2 provides details regarding model configuration and tuning parameters. For Ridge

and Lasso methods, which each involve only one tuning parameter, we employ the glmnet

package. This package effectively determines the optimal tuning parameter through a default

ten-fold cross-validation process. The process is conducted on an adaptively selected grid,

ensuring efficient and effective selection of the optimal tuning parameter. Regarding our

implementation of RF, GBRT, and NNs, we follow the protocol outlined in the simulation

section. In the case of NNs, we adhere to a uniform architectural choice across our analyses,

featuring a single hidden layer. The number of neurons in this hidden layer is approximately

equal to the square root of the total number of neurons in the input layer, aligning the

architecture with the complexity and dimensions of the dataset. By not tuning the NN

architecture extensively, we streamline the model selection process while retaining adequate

complexity for effective learning. For the remaining tuning parameters in trees and NNs, we

select suitable ranges based on model performance from the cross-validation step. A critical

element in selecting our grid is to ensure that the optimal tuning parameters are situated

within the median range of the grid.

7



Table B2: Model Configuration for Machine Learning Methods

RF GBRT NN(ℓ2) NN(ℓ1)

depth=1∼20 depth=1∼5 architecture∼{16,4,1} architecture∼{16,4,1}
#trees=500 #trees=1∼10 batch size=16 batch size=16

Finance 1 #features=1∼15 lr ∈ {0.01,0.02, (lr,epochs)={(0.1,5), (lr,epochs)={(0.4,1),
%samples=0.25∼1 0.05,0.1,0.2,0.5,1} (0.01,50), (0.0025,200)} (0.08,5), (0.02,20)}

log(λ) ∈ [−2, 1] log(λ) ∈ [−2, 1]
depth=2∼12 depth=1∼6 architecture∼{920,32,1} architecture∼{920,32,1}
#trees=500 #trees=10∼400 batch size=10000 batch size=10000

Finance 2 #features ∈ {1, lr ∈ {0.0001,0.001, (lr,epochs)={(0.5,2), (lr,epochs)={(0.5,2),
2,3,5} 0.01,0.02,0.05} (0.1,10), (0.067,15)} (0.2,5), (0.067,15),
%samples=0.5∼1 log(λ) ∈ [−4, 0] (0.05,20),(0.04,25)}

log(λ) ∈ [−5,−3]
depth=5∼50 depth=1∼5 architecture∼{119,8,1} architecture∼{119,8,1}
#trees=500 #trees=1∼600 batch size=16 batch size=16

Macro 1 #features=2∼60 lr ∈ {0.005,0.01, (lr,epochs)={(0.008,10), (lr,epochs)={(0.05,2),
%samples=0.5∼1 0.02,0.05,0.1, (0.004,20), (0.002,40), (0.02,5),(0.01,10),

0.2,0.5} (0.0008,100), (0.0005,160)} (0.005,20), (0.002,50)}
log(λ) ∈ [−2, 2] log(λ) ∈ [−10.5, 1.5]

depth=5∼40 depth=1∼5 architecture∼{119,8,1} architecture∼{119,8,1}
#trees=500 #trees=1∼200 batch size=16 batch size=16

Macro 1b #features=5∼100 lr ∈ {0.01,0.02, (lr,epochs)={(0.024,75), (lr,epochs)={(0.004,25),
%samples=0.5∼1 0.05,0.1,0.2,0.5} (0.012,150), (0.006,300) (0.002,50),(0.001,100),

(0.003,600)} (0.0005,200)}
log(λ) ∈ [−1,−0.5] log(λ) ∈ [2, 3]

depth=1∼5 depth=1∼10 architecture∼{61,8,1} architecture∼{61,8,1}
#trees=500 #trees=1∼500 batch size=16 batch size=16

Macro 2 #features=1∼5 lr ∈ {0.01,0.02, (lr,epochs)={(0.02,50), (lr,epochs)={(0.05,20),
%samples=0.5∼1 0.05,0.1,0.2,0.5} (0.005,200), (0.00125,800)} (0.02,50), (0.002,500)}

log(λ) ∈ [−3,−3] log(λ) ∈ [−7, 4]
depth=1∼60 depth=1∼5 architecture∼{297,16,1} architecture∼{297,16,1}
#trees=500 #trees=1∼20 batch size=16 batch size=16

Micro 1 #features=1∼20 lr ∈ {10−15,10−14, (lr,epochs)={(0.1,1), (lr,epochs)={(0.4,1),
%samples=0.25∼1 ...,0.05,0.1,0.2,0.5} (0.01,10), (0.001,100), (0.2,2), (0.08,5),

(0.0001,1000), (0.00005,2000)} (0.04,10), (0.02,20)}
log(λ) ∈ [−11,−7] log(λ) ∈ [−8, 0]

depth=1∼20 depth=1∼6 architecture∼{217,16,1} architecture∼{217,16,1}
#trees=500 #trees=1∼30 batch size=16 batch size=16

Micro 2 #features=2∼30 lr ∈ {0.05,0.1, (lr,epochs)={(0.1,1),(0.02,5), (lr,epochs)={(0.1,1),(0.01,10),
%samples=0.2∼0.5 0.15,. . . ,1} (0.01,10),(0.005,20)} (0.001,100), (0.0001,1000)}

log(λ) ∈ [−10,−6] log(λ) ∈ [−12,−9]
depth=1∼5 depth=1∼10 architecture∼{215,16,1} architecture∼{215,16,1}
#trees=500 #trees=1∼50 batch size=16 batch size=16

Micro 2b #features=1∼5 lr ∈ {10−10,10−9, (lr,epochs)={(0.04,5), (lr,epochs)={(0.01,50),
%samples=0.5∼1 . . . ,0.1,0.2,0.5,1} (0.02,10), (0.01,20)} (0.005,100), (0.0025,200)}

log(λ) ∈ [0, 2] log(λ) ∈ [0, 2]

Note: The table reports the range of tuning parameters for RF, GBRT, and NNs, as well as the architecture

of NNs applied across six datasets. For RF, we fix the number of trees at #trees= 500, and tune three other

parameters: the depth of the tree (depth), the number of features (#features), and the ratio of bootstrapped

samples (%samples) within a predefined grid. In the case of GBRT, we tune depth and #trees, and the

learning rate (lr). For NNs, we adopt a fixed model architecture, denoted by the number of neurons in each

layer indicated in brackets. Additionally, we fix the batch size for SGD and focus on jointly tuning the

learning rate (lr) and the number of epochs (epochs), as well as the ℓ1- or ℓ2-penalty parameter (log(λ)).
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C Lasso and Ridge in the Extremely Sparse Setting

In this section, we show that the restriction imposed on our asymptotic settings is primarily

for technical reasons. Even in the extremely sparse scenario outside the scope of our main

analysis, Lasso fails to outperform zero as long as the signal remains sufficiently weak,

whereas Ridge is capable of learning weak signals with a non-negligible probability. The

proof relies on a distinct approach, utilizing the closed-form formula of the Lasso estimator

in a simplified setting. However, this proof does not generalize to the broader case considered

earlier.

Consider the Gaussian sequence model where y = β0 + ε with ε ∼ N (0, I). For this

model, X = I and n = p. We let β0 = (
√
nτ, 0, . . . , 0)⊤, so that s = ∥β0∥0 = 1 and

R2 = ∥Xβ0∥2
∥Xβ0+ε∥2 ≍ τ → 0. We prove that as long as τ = o(s log(p)/n) (up to some log factors),

Lasso cannot learn weak signals.

Proposition C1. Assume τ ≤ n−1 log(n)/100. There exists n0 > 0, when n > n0,

P
(
∥β̂l(λ)− β0∥2 − ∥β0∥2 ≥ 0,∀λ ≥ 0

)
≥ 1− n−1/2.

Proof. Let τ0 =
√
nτ ≤ √

log n/10 and λ0 =
√
nλ/2. Note that when X = I, Lasso has a

closed form solution:

β̂l(λ) = ((|ε1 + τ0| − λ0)+sgn(ε1 + τ0), (|ε2| − λ0)+sgn(ε2), . . . , (|εn| − λ0)+sgn(εn))
⊤.

Therefore,

∥β̂l(λ)− β0∥2 − ∥β0∥2 = ((|ε1 + τ0| − λ0)+ − τ0)
2 − τ 20 +

n∑
i=2

((|εi| − λ0)+)
2.

Assume for now that max
1≤i≤n

|εi| ≥ |ε1|+ 2τ0. Let i0 = argmax |εi|, then we have

∥β̂l(λ)− β0∥2 − ∥β0∥2 ≥((|ε1 + τ0| − λ0)+ − τ0)
2 − τ 20 + ((|εi0| − λ0)+)

2 := Q

Consider the following three cases for ε1:

(i) ε1 ∈ [−λ0 − τ0, λ0 − τ0]: Q = 0 + ((|εi0| − λ0)+)
2 ≥ 0.

(ii) ε1 ∈ (−∞,−λ0 − τ0): Q ≥ −τ 20 + ((|ε1|+ 2τ0 − λ0)+)
2 ≥ −τ 20 + 9τ 20 ≥ 0.

9



(iii) ε1 ∈ (λ0 − τ0,∞): Q ≥ −τ 20 + ((|ε1|+ 2τ0 − λ0)+)
2 ≥ −τ 20 + τ 20 = 0.

Therefore, under the event that max
1≤i≤n

|εi| ≥ |ε1|+ 2τ0, it holds that

∥β̂l(λ)− β0∥2 − ∥β0∥2 ≥ 0.

Now we evaluate the probability of this event. Note that

P(max
1≤i≤n

|εi| ≤ u) = (P(|εi| ≤ u))n =

(
erf

(
u√
2

))n

≤ exp

{
−n
2
exp

{
− 2

π
u2
}}

,

where erf(·) represents the Gauss error function. The last inequality uses the fact that

(erf(x))2 ≤ 1− exp(−4x2/π) and 1 + x ≤ ex.

Reparametrizing u in terms of δ by solving δ = exp
{
−n

2
exp

{
− 2

π
u2
}}

, we obtain that,

with probability at least 1− δ:

max
1≤i≤n

|εi| ≥
√
π

2
log

n

2
− π

2
log log

1

δ
. (C1)

Choosing δ = n−1 in (C1), then the following event happens with probability at least 1− 1
n
:

C =

{
max
1≤i≤n

|εi| ≥
√
π

2
log

n

2
− π

2
log log n

}
.

Setting u =
√

π
2
log n

2
− π

2
log log n−2τ0. There exists n0 ∈ N, when n ≥ n0, u ≥ √

1.7 log n−
0.2

√
log n ≥ √

log n. By Mills’ inequalities, when n ≥ n0,

P
(
max
1≤i≤n

|εi| − 2τ0 ≥ |ε1|
∣∣∣C) ≥ P

(
|ε1| ≤

√
π

2
log

n

2
− π

2
log log n− 2τ0

)
=P (|ε1| ≤ u) ≥ 1−

√
2

π

exp (−u2/2)
u

≥ 1−
√

2

π log n
n−1/2

There exists n1 ≥ 1, when n ≥ n1, (1 −
√

2
π logn

n−1/2)(1 − 1
n
) ≥ 1 − n−1/2. Hence when

n ≥ max(n0, n1):

P
(
max
1≤i≤n

|εi| − 2τ0 ≥ |ε1|
)

≥ P(C) · P
(
max
1≤i≤n

|εi| − 2τ0 ≥ |ε1|
∣∣∣C) ≥ 1− n−1/2.

In contrast, under the same scenario, we demonstrate that Ridge is capable of learning

weak signals with a non-negligible probability.
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Proposition C2. Under the same conditions as Proposition C1, there exists n0 > 0, when

n > n0,

P
(
∃λ > 1 s.t. ∥β̂r(λ)− β0∥2 − ∥β0∥2 < 0

)
≥ 0.5.

Proof. Since β̂r(λ) = (1 + nλ)−1y, it holds that

∥β̂r(λ)− β0∥2 − ∥β0∥2 =
−2nλε1τ0 − (1 + 2nλ)τ 20 +

∑n
i=1 ε

2
i

(1 + nλ)2
.

Observe that with probability equal to 0.5, ε1τ0 ≥ 0. Under this event,

∥β̂r(λ)− β0∥2 − ∥β0∥2 ≤
−(1 + 2nλ)τ 20 +

∑n
i=1 ε

2
i

(1 + nλ)2
.

Therefore, as long as λ > (2n)−1(−1+ τ−2
0

∑n
i=1 ε

2
i ), we have ∥β̂r(λ)− β0∥2 −∥β0∥2 < 0.

D Mathematical Proofs

D.1 Proof of Theorem 1

Proof. Throughout the proof, we employ the shorthand notation “w.a.p.1” to denote “with

probability approaching one.” For two random variables X and Y , we write X ⊥ Y when

they are independent and X
d
= Y when they have the same distribution.

For convenience, we omit the subscript F from the expectation operator EF (·). Our

objective is to demonstrate that

E∥Σ1/2
2 (E(β0|X, y)− β0)∥2

E∥Σ1/2
2 β0∥2

→ 1, as n→ ∞.

This can be shown by proving E∥Σ1/2
2 E(β0|X, y)∥2 = o(E∥Σ1/2

2 β0∥2). Given that the

eigenvalues of Σ2 are bounded away from zero and positive infinity, it suffices to es-

tablish that E∥E(β0|X, y)∥2 = o(τ). Therefore, we need to prove for all 1 ≤ i ≤ p,

E(E(β0,i|X, y))2 = o(p−1τ), or, equivalently, E(E(b0,i|X, y))2 = o(1).

By the inequality E(E(A|F)2) ≤ E(E(A|G)2) for F ⊂ G, and that β0 is i.i.d., we have

E(E(b0,i|X, y))2 ≤ E(E(b0,i|X, y, β0,−i))
2 = E(E(b0,i|X·,i, β0,iΣ

−1/2
ε X·,i + z))2,

where z is defined in Assumption 2, X·,i represents the i-th column of X, and β0,−i de-
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notes the subvector of β without the ith entry. Denote the information set generated by

{X·,i, β0,iΣ
−1/2
ε X·,i + z} as Gi. By Assumption 3, b0,i can be written as q−1/2b1ib2i where

b1i ∼ B(1, q) and b2i is a sub-exponential random variable with mean zero and variance σ2
β,

whose distribution function is denoted by Fb2 . For any M1 < 0, find M2 (a function of

M1) such that Eb0,i1q1/2b0,i∈[M1,M2] = q1/2Eb2i1b2i∈[M1,M2] = 0. This is always feasible because

Eb2i = 0. By Cauchy-Schwarz inequality, we have

E(E(b0,i|Gi))
2 ≤3E

(
E(b0,i1q1/2b0,i∈[M1,M2]|Gi)

)2
+ 3E

(
E(b0,i1q1/2b0,i>M2

|Gi)
)2

+ 3E
(
E(b0,i1q1/2b0,i<M1

|Gi)
)2

=: 3S1n + 3S2n + 3S3n. (D1)

Now we prove for any given M1, limn→∞ S1n = 0. Write x̃k = (Σ
−1/2
ε X·,i)k and ỹk =

β0,ix̃k + zk for k = 1, . . . , n. By definition, we have

E(b0,i1q1/2b0,i∈[M1,M2]|Gi) =

∫
b1q1/2b∈[M1,M2] exp

(
−

n∑
k=1

(
ỹk − p−1/2τ 1/2x̃kb

)2
/2

)
dF (b)

∫
exp

(
−

n∑
k=1

(
ỹk − p−1/2τ 1/2x̃kb

)2
/2

)
dF (b)

=

∫
b1q1/2b∈[M1,M2] exp

(
−p−1τb2

n∑
k=1

x̃2k/2 + bp−1/2τ 1/2
n∑

k=1

ỹkx̃k

)
dF (b)

∫
exp

(
−p−1τb2

n∑
k=1

x̃2k/2 + bp−1/2τ 1/2
n∑

k=1

ỹkx̃k

)
dF (b)

:=
Q1n

Q2n

,

where F is the distribution function of b0,i. By the facts that
∫
b1q1/2b∈[M1,M2]dF (b) = 0 and

dF (b) = (1− q)δ0 + qdFb2(q
1/2b), we have

|Q1n| =
∣∣∣∣∣
∫
qb1q1/2b∈[M1,M2]

[
exp

(
−p−1τb2

n∑
k=1

x̃2k/2 + bp−1/2τ 1/2
n∑

k=1

ỹkx̃k

)
− 1

]
dFb2(q

1/2b)

∣∣∣∣∣
≤q1/2M̃

∫ ∣∣∣∣∣exp
(
−p−1τq−1b̃2

n∑
k=1

x̃2k/2 + b̃q−1/2p−1/2τ 1/2
n∑

k=1

ỹkx̃k

)
− 1

∣∣∣∣∣ dFb2(b̃),

where M̃ := max(|M1|, |M2|). Define the event

An :=

{∣∣p−1/2τ 1/2
n∑

k=1

ỹkx̃k
∣∣ ≤ C̃p−1/2τ 1/2n1/2 log2(p) and p−1τ

n∑
k=1

x̃2k ≤ C̃p−1nτ

}
(D2)
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where C̃ := 5C1C2c
−1
ε . Under this event, we observe that∣∣∣∣∣exp

(
−p−1τq−1b̃2

n∑
k=1

x̃2k/2 + b̃q−1/2p−1/2τ 1/2
n∑

k=1

ỹkx̃k

)
− 1

∣∣∣∣∣
≤ exp

(
C̃|b̃|p−1/2τ 1/2n1/2q−1/2 log2(p)

)
− exp

(
−C̃b̃2p−1nτq−1 − C̃|b̃|p−1/2τ 1/2n1/2q−1/2 log2(p)

)
.

Since p−1/2τ 1/2n1/2q−1/2 log2(p) → 0 and p−1nτq−1 → 0 by Assumption 4 and Fb2 is a sub-

exponential distribution, the integration of both terms on the right-hand-side converges to

zero as n → ∞. Therefore, we conclude that for any ϵ > 0, there exists n0 such that when

n > n0, |Q1n| ≤ ϵ under the event An. Similarly, it can be proven there exists n1 such that

when n > n1, Q2n ≥ 1/2 under the event An. Hence we have

lim
n→∞

S1n = lim
n→∞

E
(
E(b0,i1q1/2b0,i∈[M1,M2]|Gi)

)2
1An + lim

n→∞
E
(
E(b0,i1q1/2b0,i∈[M1,M2]|Gi)

)2
1Ac

n

≤ 4ϵ2 + lim
n→∞

q−1M̃2P(Ac
n) ≤ 4ϵ2 + lim

n→∞
p−1q−1M̃2 = 4ϵ2,

where we use Lemma 13 in the last inequality. Since ϵ is arbitrary, we have limn→∞ S1n = 0.

Observe that S2n = E
(
E(b0,i1q1/2b0,i>M2

|Gi)
)2 ≤ Eb20,i1q1/2b0,i>M2

. As a result, (D1) implies

lim
n→∞

E(E(b0,i|Gi))
2 ≤ 3Eb20,i1q1/2b0,i>M2

+ 3Eb20,i1q1/2b0,i<M1
= 3Eb22i1b2i>M2 + 3Eb22i1b2i<M1 .

Since b2i has finite variance, the right-hand-side of the above inequality can be arbitrarily

small by letting M1 → −∞, which completes the proof.

D.2 Proof of Theorem 2

Proof. For ease of notation, we let β̂ := β̂r(λn) and cn := p/n. Additionally, define δ∗1 :=

2
√
σ2
εθ1, δ

∗
2 := (2λσ2

xσ
2
βθ4 − 4σ2

εσ
2
xθ3)/δ

∗
1λ, µ(σxσβ, δ

∗
1, δ2) := (δ∗1δ2 − 2σ2

xσ
2
βθ4)/4σ

2
εθ3, and

Cϕ
n := cnτ

−1σ2
xσ

2
β − cn

τ−1σ2
x(δ

∗
1)

2

4λ
+
cnσ

2
εσ

4
xθ3

λ2
−
cnσ

4
xσ

2
βθ4

λ
.

We first show that it is sufficient to establish that

cnτ
−3/2(∥Σ1/2

2 (β̂ − β0)∥ − ∥Σ1/2
2 β0∥) P−→ α∗

2 := θ2σ
3
x

(
σ2
εθ1

2λ2σβ
− σβ

λ

)
. (D3)

This is because Eq. (D3) implies that

13



∥Σ1/2
2 (β̂ − β0)∥2 = ∥Σ1/2

2 β0∥2 + 2c−1
n τ 3/2α∗

2∥Σ1/2
2 β0∥+ oP(c

−1
n τ 2).

On the other hand, using Lemma 2 and q−1/2p−1/2 = o(1) by Assumption 4, we deduce that

∥Σ1/2
2 β0∥ = τ 1/2σxσβ +OP(q

−1/2p−1/2τ 1/2). (D4)

The above two equations together yield the desired result of the theorem.

To prove Eq. (D3), by incorporating (D4) and cnq
−1/2p−1/2τ−1 = o(1) by Assumption 4,

it reduces to showing that

cnτ
−1(τ−1/2∥Σ1/2

2 (β̂ − β0)∥ − σxσβ)
P−→ α∗

2. (D5)

Set w = τ−3/2Σ
1/2
2 (β− β0) and ŵ = τ−3/2Σ

1/2
2 (β̂− β0). After rewriting Ridge’s optimiza-

tion problem (2), ŵ equals

argmin
w

cn
n

∥∥∥τ 1/2Σ1/2
1 Zw − τ−1ε

∥∥∥2 + c2nλ
∥∥∥Σ−1/2

2 w + τ−3/2β0

∥∥∥2 − cnτ
−2

n
∥ε∥2 − Cϕ

n , (D6)

where subtracting cnτ
−2∥ε∥2/n and Cϕ

n from the objective function does not alter the solu-

tion. Using the definition of ŵ, proving (D5) is equivalent to proving cn∥ŵ∥−cnτ−1σxσβ
P−→

α∗
2. Equivalently, we need to prove for all ϵ > 0, w.p.a.1,

α∗
2 − ϵ ≤ cn∥ŵ∥ − cnτ

−1σxσβ ≤ α∗
2 + ϵ. (D7)

Next, we note from Lemma 14 that it suffices to prove the above convergence holds true for

ŵB, where ŵB is a solution to

argmin
w∈Sn

w

cn
n

∥∥∥τ 1/2Σ1/2
1 Zw − τ−1ε

∥∥∥2 + c2nλ
∥∥∥Σ−1/2

2 w + τ−3/2β0

∥∥∥2 − cnτ
−2

n
∥ε∥2 − Cϕ

n , (D8)

and Sn
w = {w

∣∣cnτ−1σxσβ −Kα ≤ cn∥w∥ ≤ cnτ
−1σxσβ +Kα} for some sufficiently large Kα.

We’ll denote the optimal solution as ŵ instead of using ŵB for simplicity.

Note that for any vector x, ∥x∥2 = maxu
√
nu⊤x− n∥u∥2/4, where its argmax is 2x/

√
n,

and similarly ∥x∥2 = maxv v
⊤x−∥v∥2/4. Applying these equalities to ∥τ 1/2Σ1/2

1 Zw− τ−1ε∥2
and ∥Σ−1/2

2 w + τ−3/2β0∥2, setting ũ = Σ
1/2
1 u, and ṽ = Σ

−1/2
2 v, we can rewrite (D8) as

min
w∈Sn

w

max
ũ,ṽ

cnτ
1/2

√
n
ũ⊤Zw − cnτ

−1

√
n
ũ⊤Σ

−1/2
1 ε− cn∥Σ−1/2

1 ũ∥2
4

+ c2nλṽ
⊤w + c2nλτ

−3/2ṽ⊤Σ
1/2
2 β0

14



− c2nλ∥Σ1/2
2 ṽ∥2
4

− cnτ
−2

n
∥ε∥2 − Cϕ

n . (D9)

To simplify notation and without ambiguity, we continue using u and v in place of ũ and ṽ.

For a given w, the argmax of Eq. (D9), denoted by û, is equal to 2√
n
(τ 1/2Σ1Zw −

τ−1Σ
1/2
1 ε). Given the definition of Sn

w and Assumptions 1 and 2, we have ∥w∥ ≤ τ−1σxσβ +

c−1
n Kα, ∥Σ1∥ ≤ C1, ∥Σε∥ ≤ Cε. Furthermore, w.p.a. 1, ∥z∥ ≤

√
2n by the law of large

numbers, which implies ∥ε∥ ≤ √
2Cεn. Together with Lemma 6 and that τcn → 0 by

Assumption 4, we have the following upper bound for ∥û∥ as n is large enough:

∥û∥ ≤ 2τ 1/2√
n

∥Σ1Zw∥+
2√
n
∥τ−1Σ

1/2
1 ε∥ ≤ 4τ−1

√
C1Cε.

Let Sn
u = {u

∣∣∥u∥ ≤ 4τ−1
√
C1Cε}. Based on the above result, w.a.p.1, the following opti-

mization problem is equivalent to (D9):

min
w∈Sn

w

max
u∈Sn

u
v

cnτ
1/2

√
n
u⊤Zw − cnτ

−1

√
n
u⊤Σ

−1/2
1 ε− cn∥Σ−1/2

1 u∥2
4

+ c2nλv
⊤w + c2nλτ

−3/2v⊤Σ
1/2
2 β0

− c2nλ∥Σ1/2
2 v∥2
4

− cnτ
−2

n
∥ε∥2 − Cϕ

n . (D10)

Next, we need introduce an auxiliary problem for the purpose of applying CGMT:

ϕ(g, h) = max
0≤δ≤4τ−1

√
C1Cε

v

min
w∈Sn

w

max
∥u∥=δ

Rn(w, v, u), where

Rn(w, v, u) =
cnτ

1/2

√
n

∥w∥g⊤u− cnτ
1/2

√
n
δh⊤w − cnτ

−1

√
n
u⊤Σ

−1/2
1 ε− cn∥Σ−1/2

1 u∥2
4

+ c2nλv
⊤w + c2nλτ

−3/2v⊤Σ
1/2
2 β0 −

c2nλ∥Σ1/2
2 v∥2
4

− cnτ
−2

n
∥ε∥2 − Cϕ

n ,

(D11)

and g ∈ Rn and h ∈ Rp are standard Gaussian vectors, independent of the other random

variables. Similarly, let S̃n := {w
∣∣|cn∥w∥ − cnτ

−1σxσβ − α∗
2| < ϵ}, define ϕS̃c

n
(g, h) as the

optimal value of an analogous optimization problem to (D11), with w restricted to Sn
w ∩ S̃c

n.

Lemma 15 characterizes the limiting behavior of the optimal solution to (D10), ŵ, and

in turn, proves the desired (D7), under conditions pertaining to the optimization problem

(D11). Therefore, we only need show that conditions outlined in Lemma 15 hold. That is,

we need to prove the existence of the constants ϕ̄ < ϕ̄S̃c
n
such that for all η > 0, w.p.a.1 in

the limit of n→ ∞, ϕ(g, h) < ϕ̄+ η and ϕS̃c
n
(g, h) > ϕ̄S̃c

n
− η.
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Let ū = u/δ, maximizing part of Rn(w, v, u) pertaining to u over u simplifies to the

following problem:

max
∥u∥=δ

cnτ
1/2

√
n

∥w∥g⊤u− cnτ
−1

√
n
u⊤Σ

−1/2
1 ε− cn∥Σ−1/2

1 u∥2
4

= max
∥ū∥=1

cnδ√
n
(τ 1/2∥w∥g − τ−1Σ

−1/2
1 ε)⊤ū− cnδ

2

4
ū⊤Σ−1

1 ū.

The latter is a quadratic programming problem, which has been extensively studied in, e.g.,

Gander et al. (1989) and Tao and An (1998). The optimal value associated with this problem

is given by the following expression:

−cnδ
2

4
µn(α, δ) +

cn
n
(τ 1/2αg − τ−1Σ

−1/2
1 ε)⊤(Σ−1

1 − µn(α, δ)I)−1(τ 1/2αg − τ−1Σ
−1/2
1 ε) (D12)

where α := ∥w∥ and µn(α, δ) is the solution to

1

n
(τ 1/2αg − τ−1Σ

−1/2
1 ε)⊤(Σ−1

1 − µn(α, δ)I)−2(τ 1/2αg − τ−1Σ
−1/2
1 ε)− δ2

4
= 0, (D13)

under the condition that Σ−1
1 − µn(α, δ)I is positive semidefinite. Using this, Eq. (D11) can

be rewritten as the following:

max
0≤δ≤4τ−1

√
C1Cε

v

min
w∈Sn

w

− cnδ
2

4
µn(α, δ) +

cn
n
(τ 1/2αg − τ−1Σ

−1/2
1 ε)⊤(Σ−1

1 − µn(α, δ)I)−1

× (τ 1/2αg − τ−1Σ
−1/2
1 ε)− cnτ

1/2

√
n
δh⊤w + c2nλv

⊤w

+ c2nλτ
−3/2v⊤Σ

1/2
2 β0 −

c2nλ∥Σ1/2
2 v∥2
4

− cnτ
−2

n
∥ε∥2 − Cϕ

n .

Solving the inside minimization problem with respect to w/α while fixing α leads to

max
0≤δ≤4τ−1

√
C1Cε

v

min
|cnα−cnτ−1σxσβ |≤Kα

− cnδ
2

4
µn(α, δ) +

cn
n
(τ 1/2αg − τ−1Σ

−1/2
1 ε)⊤(Σ−1

1 − µn(α, δ)I)−1

× (τ 1/2αg − τ−1Σ
−1/2
1 ε)− cn∥cnλv − n−1/2τ 1/2δh∥α (D14)

+ c2nλτ
−3/2v⊤Σ

1/2
2 β0 −

c2nλ∥Σ1/2
2 v∥2
4

− cnτ
−2

n
∥ε∥2 − Cϕ

n .

By Lemma 16, the objective function of the above optimization is convex in α and jointly

16



concave in (δ, v). As a result, we can switch the order of min and max by Corollary 3.3

in Sion (1958). Also, note that for any vector x, ∥x∥ = minγ>0
1
2γ
∥x∥2 + γ

2
. Applying this

equation to ∥cnλv − n−1/2τ 1/2δh∥α, Eq. (D14) becomes

min
cn|α−τ−1σxσβ |≤Kα

max
γ>0

0≤δ≤4τ−1
√

C1Cε

max
v

−cnδ
2

4
µn(α, δ) +

cn
n
(τ 1/2αg − τ−1Σ

−1/2
1 ε)⊤

× (Σ−1
1 − µn(α, δ)I)−1(τ 1/2αg − τ−1Σ

−1/2
1 ε)− cnγ

2
− cnα

2

2γ
∥cnλv − n−1/2τ 1/2δh∥2

+ c2nλτ
−3/2v⊤Σ

1/2
2 β0 −

c2nλ∥Σ1/2
2 v∥2
4

− cnτ
−2

n
∥ε∥2 − Cϕ

n .

Note that the objective function above is jointly concave in (δ, γ, v). To see why this is true,

it is sufficient to prove that −α2

2γ
∥cnλv − n−1/2τ 1/2δh∥2 is jointly concave in (δ, γ, v), which

follows by Lemma 13 in Thrampoulidis et al. (2018). Consequently, after solving the first

maximization problem over v, the resulting function remains jointly concave in (δ, γ).

Maximizing over v is again a standard quadratic programming problem, which leads to

min
cn|α−τ−1σxσβ |≤Kα

max
γ>0

0≤δ≤4τ−1
√

C1Cε

−cnδ
2

4
µn(α, δ) +

cn
n
(τ 1/2αg − τ−1Σ

−1/2
1 ε)⊤(Σ−1

1 − µn(α, δ)I)−1

× (τ 1/2αg − τ−1Σ
−1/2
1 ε)− cnγ

2
+
c2nλ

2

4

(
τ−3/2Σ

1/2
2 β0 +

α2δτ 1/2√
nγ

h

)⊤(
λ

4
Σ2 +

cnα
2λ2

2γ
I
)−1

×
(
τ−3/2Σ

1/2
2 β0 +

α2δτ 1/2√
nγ

h

)
− cnτα

2δ2

2γn
∥h∥2 − cnτ

−2

n
∥ε∥2 − Cϕ

n . (D15)

Denote the objective function as Qn(α, δ, γ). The optimization problem now reduces to a

scalar problem. Let us define γ = τ−1γ1, δ = τ−1δ∗1 + δ∗2 + c
−1/2
n δ3 and α = τ−1σxσβ + c−1

n α2.

Subsequently, we present the modified objective function Q̃n(α2, δ3, γ1) as follows:

Q̃n(α2, δ3, γ1) := Qn(τ
−1σxσβ + c−1

n α2, τ
−1δ∗1 + δ∗2 + c−1/2

n δ3, τ
−1γ1). (D16)

It is evident that Q̃n remains convex with respect to α2 and jointly concave with respect to

(δ3, γ1). Moreover, Lemma 17 establishes the probability limit of Q̃n:

Q̃n
P−→ Q̃(α2, δ3, γ1) :=− δ23θ1

4θ3
+ 2σxσβα2 −

γ21
4σ2

xσ
2
βλ
θ2 −

γ1α2

σxσβ
+

(δ∗1)
2γ1

8λ2σ2
xσ

2
β

θ2, (D17)

as well as the following inequalities: for any η > 0,
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(i) ϕ(g, h) < min
α2∈[−Kα,Kα]

max
γ1>0
δ3∈R

Q̃(α2, δ3, γ1) + η,

(ii) ϕS̃c
n
(g, h) > min

α2∈[−Kα,α∗
2−ϵ]∪[α∗

2+ϵ,Kα]
max
γ1>0
δ3∈R

Q̃(α2, δ3, γ1)− η, (D18)

(iii) min
α2∈[−Kα,Kα]

max
γ1>0

δ3∈Kδ3

Q̃(α2, δ3, γ1) < min
α2∈[−Kα,α∗

2−ϵ]∪[α∗
2+ϵ,Kα]

max
γ1>0
δ3∈R

Q̃(α2, δ3, γ1).

This establishes the conditions of Lemma 15, and thereby completes the proof.

D.3 Proof of Theorem 3

Proof. For convenience, we define the shorthand notation β̂i
λn

:= β̂i
r(λn). Also, we define

R̂K−CV (λn) :=
1

n

K∑
i=1

∥y(i) −X(i)β̂
i
r(λn)∥2. (D19)

By Lemma 6, w.p.a.1, we have

1

n
∥X⊤

(−i)X(−i)∥ ≤ 1

n
C2∥Z⊤

(−i)Z(−i)∥ ≤ C2(1 +
√
cn)

2, i = 1, . . . , K. (D20)

Additionally, by Lemmas 2 and 3, w.p.a.1, we have

1

n
∥ε∥2 ≤ 2σ2

ε and
1

n
∥y∥2 ≤ 2σ2

ε . (D21)

Under the condition that λn ≥ ϵ, using (D20) and (D21), we have, w.p.a.1,

∥β̂i
λn
∥2 =

∥∥∥∥∥ 1n
(
1

n
X⊤

(−i)X(−i) + cnλnI
)−1

X(−i)y(−i)

∥∥∥∥∥
2

≤ ∥X(−i)y(−i)∥2
c2nϵ

2n2
≤ 2C2σ

2
ε(1 +

√
cn)

2

c2nϵ
2

.

Using a similar argument, we have, w.p.a.1,

∥β̂i
λ1

− β̂i
λ2
∥2 = c2n(λ1 − λ2)

2

∥∥∥∥∥ 1n
(
1

n
X⊤

(−i)X(−i) + cnλ2

)−1(
1

n
X⊤

(−i)X(−i) + cnλ1

)−1

X(−i)y(−i)

∥∥∥∥∥
2

≤ (λ1 − λ2)
2

n2c2nλ
2
1λ

2
2

∥X(−i)y(−i)∥2 ≤
2C2σ

2
ε(1 +

√
cn)

2(λ1 − λ2)
2

c2nϵ
4

. (D22)

With the inequalities above and triangle inequalities, we obtain, w.a.p.1,
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|R̂K−CV (λ1)− R̂K−CV (λ2)| =
1

n

∣∣∣∣∣
K∑
i=1

(
∥y(i) −X(i)β̂

i
λ1
∥2 − ∥y(i) −X(i)β̂

i
λ2
∥2
)∣∣∣∣∣

≤ 2

n

K∑
i=1

∥X(i)∥∥β̂i
λ1

− β̂i
λ2
∥
(
∥y(i)∥+

2C
1/2
2 σε(1 +

√
cn)

cnϵ
∥X(i)∥

)
≤ C̃|λ1 − λ2|, (D23)

where C̃ is some fixed constant. Based on this inequality, Lemma 18 proves

inf
λ∈[ϵ,c̃τ−1]

pn−1τ−2

{
R̂K−CV (λ)− 1

n
∥ε∥2 − ∥Σ1/2

2 β0∥2
}
> 0, (D24)

w.p.a.1 for some constant c̃ > 0. Additionally, as n→ ∞, for any fixed λ > 0,

pn−1τ−2

{
R̂K−CV (τ−1λ)− 1

n
∥ε∥2 − ∥Σ1/2

2 β0∥2
}

P−→ 2(K − 1)

K
θ2σ

4
x

(
σ2
ε

2λ2
−
σ2
β

λ

)
. (D25)

Using (D25) and the definition of λopt, we obtain, w.p.a.1,

pn−1τ−2

{
R̂K−CV (τ−1λopt)− 1

n
∥ε∥2 − ∥Σ1/2

2 β0∥2
}

< 0 < inf
λ∈[ϵ,c̃τ−1]

pn−1τ−2

{
R̂K−CV (λ)− 1

n
∥ε∥2 − ∥Σ1/2

2 β0∥2
}
.

This suggests that the minimizer of R̂K−CV (λ) must satisfy λ̂K−CV ≥ c̃τ−1, w.a.p.1, so that,

λ̂K−CV
n = argminλn∈[c̃τ−1,∞) R̂

K−CV (λn). Moreover, it also implies that τ−1λopt /∈ [ϵ, c̃τ−1],

that is, λopt ≥ c̃. Next, we re-parametrize the above optimization problem:

µ̃ = argmin
µ∈[0,c̃−1]

R̃(µ), where R̃(µ) := R̂K−CV (τ−1µ−1),

and we extend the domain of R̃(·) to include 0: R̃(0) := limµ→0 R̃(µ) = ∥y∥2/n. Lemma 19

implies that pn−1τ−2R̃(µ) satisfies stochastic equicontinuity. Using this fact and Theorem 1

of Newey (1991), the convergence of

pn−1τ−2

{
R̃(µ)− 1

n
∥ε∥2 − ∥Σ1/2

2 β0∥2
}

P−→ 2(K − 1)

K
θ2σ

4
x

(
σ2
εµ

2

2
− σ2

βµ

)
holds uniformly over the interval [0, c̃−1]. Since (λopt)−1 is a unique minimizer of the right-

hand-side and is distinct from zero, it follows that µ̃
P−→ (λopt)−1 and µ̃ = τ−1(λ̂K−CV

n )−1,

w.a.p.1, which conclude the proof.
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D.4 Proof of Theorem 4

Proof. For ease of notation, we let β̂ := β̂l(λn). We adopt the same notation δ∗1 and

µ(σxσβ, δ
∗
1, δ2) as used in the proof of Theorem 2. With respect to δ∗2 and Cϕ

n , we define

them as 2σ2
xσ

2
βθ4/δ

∗
1 and cnτ

−1σ2
xσ

2
β, respectively.

Analogous to the proof of Theorem 2, it is essential to establish that the following in-

equality holds w.a.p.1 for any sufficiently small ϵ > 0:

cα
2σβ

+ ϵ ≤ cnτ
−1(τ−1/2∥Σ1/2

2 (β̂ − β0)∥ − σxσβ) ≤
Cα

2σβ
− ϵ. (D26)

Define w = τ−3/2Σ
1/2
2 (β − β0). Using this, we can rewrite (3) as the following problem:

ŵ = argmin
w

cn
n
∥τ 1/2Σ1/2

1 Zw − τ−1ε∥2 + cnτ
−1/2λn√
n

∥Σ−1/2
2 w + τ−3/2β0∥1 −

cnτ
−2

n
∥ε∥2 − Cϕ

n .

Define Sn
w = {w

∣∣cnτ−1σxσβ + cα/4σβ ≤ cn∥w∥ ≤ cnτ
−1σxσβ + Cα/σβ}. Analogous to the

result proved by Lemma 14, if the solution ŵB to the following problem

min
w∈Sn

w

cn
n
∥τ 1/2Σ1/2

1 Zw̃ − τ−1ε∥2 + cnτ
−1/2λn√
n

∥Σ−1/2
2 w + τ−3/2β0∥1 −

cnτ
−2

n
∥ε∥2 − Cϕ

n (D27)

satisfies cn∥ŵB∥ − cnτ
−1σxσβ ∈ [cα/2σβ + ϵ, Cα/2σβ − ϵ] w.a.p.1, then the same holds true

for ŵ, which leads to the desired result, (D27). In light of this, without ambiguity we now

directly focus on (D27), and refer to ŵB as ŵ for ease of notation.

Note that for any vector x, it holds that ∥x∥2 = maxu
√
nu⊤x − n∥u∥2/4, and

∥x∥1 = max∥v∥∞≤1 v
⊤x. By applying these equations to ∥τ 1/2Σ1/2

1 Zw̃ − τ−1ε∥2 and

∥Σ−1/2
2 w + τ−3/2β0∥1, and letting ũ := Σ

1/2
1 u, the problem (D27) can be reformulated as:

min
w∈Sn

w

max
ũ

∥v∥∞≤1

cnτ
1/2

√
n
ũ⊤Zw − cnτ

−1

√
n
ũ⊤Σ

−1/2
1 ε− cn∥Σ−1/2

1 ũ∥2
4

+
cnτ

−2λn√
n

v⊤β0

+
cnτ

−1/2λn√
n

v⊤Σ
−1/2
2 w − cnτ

−2

n
∥ε∥2 − Cϕ

n . (D28)

For convenience, we shall continue to employ u in place of ũ throughout the remainder of

the proof. Let Sn
u = {u

∣∣∥u∥ ≤ 4τ−1
√
C1Cε}. Similar to the proof of Theorem 2, w.a.p.1, the

optimization problem below
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min
w∈Sn

w

max
u∈Sn

u
∥v∥∞≤1

cnτ
1/2

√
n
u⊤Zw − cnτ

−1

√
n
u⊤Σ

−1/2
1 ε− cn∥Σ−1/2

1 u∥2
4

+
cnτ

−2λn√
n

v⊤β0

+
cnτ

−1/2λn√
n

v⊤Σ
−1/2
2 w − cnτ

−2

n
∥ε∥2 − Cϕ

n (D29)

is equivalent to Eq. (D28). Next, we construct an auxiliary optimization problem:

ϕ(g, h) = max
0≤δ≤4τ−1

√
C1Cε

∥v∥∞≤1

min
w∈Sn

w

max
∥u∥=δ

Rn(w, v, u), where

Rn(w, v, u) =
cnτ

1/2

√
n

∥w∥g⊤u− cnτ
1/2

√
n

∥u∥h⊤w − cnτ
−1

√
n
u⊤Σ

−1/2
1 ε− cn∥Σ−1/2

1 u∥2
4

+
cnτ

−2λn√
n

v⊤β0 +
cnτ

−1/2λn√
n

v⊤Σ
−1/2
2 w − cnτ

−2

n
∥ε∥2 − Cϕ

n ,

(D30)

and both g ∈ Rn and h ∈ Rp are standard Gaussian vectors, independent of all other random

variables. Moreover, let S̃n := {w
∣∣cα/2σβ + ϵ < cn∥w∥ − cnτ

−1σxσβ < Cα/2σβ − ϵ}, define
ϕS̃c

n
(g, h) as the optimal value of the optimization problem (D30), with w ∈ Sn

w ∩ S̃c
n.

Lemma 20 characterizes the limiting behavior of the optimal solution to (D29), ŵ, and

in turn, proves the desired (D26), under conditions pertaining to the optimization problem

(D30). Therefore, we only need show that conditions outlined in Lemma 20 hold. That is,

we need to prove the existence of the constants ϕ̄ < ϕ̄S̃c
n
such that for all η > 0, w.a.p.1,

ϕ(g, h) < ϕ̄+ η and ϕS̃c
n
(g, h) > ϕ̄S̃c

n
− η.

Following the same argument as in the proof of Theorem 2, after maximizing over the

direction of u and minimizing over the direction of w, Eq. (D30) becomes equivalent to:

max
0≤δ≤4τ−1

√
C1Cε

∥v∥∞≤1

min
α∈Kα

− cnδ
2

4
µn(α, δ) +

cn
n
(τ 1/2αg − τ−1Σ

−1/2
1 ε)⊤(Σ−1

1 − µn(α, δ)I)−1

× (τ 1/2αg − τ−1Σ
−1/2
1 ε)− cn

∥∥∥n−1/2τ 1/2δh− n−1/2τ−1/2λnΣ
−1/2
2 v

∥∥∥α
+
cnτ

−2λn√
n

v⊤β0 −
cnτ

−2

n
∥ε∥2 − Cϕ

n ,

where Kα := {α|cnα− cnτ
−1σxσβ ∈ [cα/4σβ, Cα/σβ]}. By Lemma 16, the objective function

of the above optimization problem is convex in α and jointly concave in (δ, v). Consequently,

we can interchange the order of min and max by applying Corollary 3.3 in Sion (1958).

Applying ∥x∥ = minγ>0
1
2γ
∥x∥2 + γ

2
to
∥∥∥n−1/2τ 1/2δh⊤ − n−1/2τ−1/2λnv

⊤Σ
−1/2
2

∥∥∥α, we obtain:
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min
α∈Kα

max
γ>0

0≤δ≤4τ−1
√

C1Cε

max
∥v∥∞≤1

− cnδ
2

4
µn(α, δ) +

cn
n
(τ 1/2αg − τ−1Σ

−1/2
1 ε)⊤(Σ−1

1 − µn(α, δ)I)−1

× (τ 1/2αg − τ−1Σ
−1/2
1 ε)− cnγ

2
+
cnτ

−2λn√
n

v⊤β0 −
cnτ

−2

n
∥ε∥2

− cnα
2

2γ

∥∥∥n−1/2τ 1/2δh− n−1/2τ−1/2λnΣ
−1/2
2 v

∥∥∥2 − Cϕ
n .

By completing the square for terms associated with v, we can rewrite this problem as:

min
α∈Kα

max
γ>0

0≤δ≤4τ−1
√

C1Cε

−cnδ
2

4
µn(α, δ) +

cn
n
(τ 1/2αg − τ−1Σ

−1/2
1 ε)⊤(Σ−1

1 − µn(α, δ)I)−1

× (τ 1/2αg − τ−1Σ
−1/2
1 ε)− cnγ

2
+
cnγτ

−3

2α2
β0Σ2β0 +

cnτ
−1δ√
n

h⊤Σ
1/2
2 β0 (D31)

− min
∥v∥∞≤1

cnα
2

2γ

∥∥∥n−1/2τ−1/2λnΣ
−1/2
2 v − n−1/2τ 1/2δh− γ

α2
τ−3/2Σ

1/2
2 β0

∥∥∥2 − cnτ
−2

n
∥ε∥2 − Cϕ

n .

Denote the objective function as Qn(α, δ, γ). Similar to Theorem 2, we define γ = τ−1γ1,

δ = τ−1δ∗1 + δ∗2 + c
−1/2
n δ3, and α = τ−1σxσβ + c−1

n α2. We obtain the modified objective

function Q̃n(α2, δ3, γ1) as follows:

Q̃n(α2, δ3, γ1) := Qn(τ
−1σxσβ + c−1

n α2, τ
−1δ∗1 + δ∗2 + c−1/2

n δ3, τ
−1γ1). (D32)

Note that δ3 ∈ Kδ3 := [−c1/2n (τ−1δ∗1 + δ
∗
2), 4c

1/2
n τ−1

√
C1Cε− c1/2n (τ−1δ∗1 + δ

∗
2)]. Finally, Lemma

21 verifies the following inequalities:

ϕ(g, h) = min
α2∈[ cα

4σβ
,Cα
σβ

]
max
γ1>0

δ3∈Kδ3

Q̃n(α2, δ3, γ1) < − Cλ

8C2

+ η,

ϕS̃c
n
(g, h) = min

α2∈[ cα
4σβ

, cα
2σβ

+ϵ]∪[ Cα
2σβ

−ϵ,Cα
σβ

]
max
γ1>0

δ3∈Kδ3

Q̃n(α2, δ3, γ1) > − Cλ

100C2

− η,

(D33)

which hold for sufficiently small ϵ > 0 and η > 0. With Lemma 20, we conclude the proof.

D.5 Proof of Proposition 1

Proof. Since the out-of-sample data are mutually independent, Lemmas 2 and 3 lead to:∑
i∈OOS

y2i = noos(σ
2
ε + τσ2

xσ
2
β) + oP(noosτ),
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∑
i∈OOS

y2i − (yi −Xiβ̂r(λ
opt
n ))2 = −noosp

−1nτ 2∆(β̂r(λ
opt
n )) +OP(n

1/2
oosτ)

= noosp
−1nτ 2θ2σ

4
xσ

4
βσ

−2
ε (1 + oP(1)),

where we use ∆(β̂r(λ
opt
n )) = −θ2σ4

xσ
4
βσ

−2
ε + oP(1) by Theorem 2 and noosp

−2n2τ 2 → ∞ in the

last equation. The estimates above offer the key components for deriving the limit of R2
oos:

R2
oos =

∑
i∈OOS y

2
i − (yi −Xiβ̂r(λ

opt
n ))2∑

i∈OOS y
2
i

= p−1nθ2(R
2)2(1 + oP(1)).

D.6 Proof of Theorem 5

Proof. For convenience, let β̂ := β̂r(λn). We write the prediction error of the benchmark as:

ynew − ŷnewb =(wnew)⊤γ0 + (xnew)⊤β0 + εnew − (wnew)⊤(W⊤W )−1W⊤(Wγ0 +Xβ0 + ε)

=((unew)⊤ − (wnew)⊤(W⊤W )−1W⊤U)β0 + (εnew − (wnew)⊤(W⊤W )−1W⊤ε).

Similarly, for the Ridge estimator, we have

ynew − ŷnew = ((unew)⊤ − (wnew)⊤(W⊤W )−1W⊤U)(β0 − β̂) + (εnew − (wnew)⊤(W⊤W )−1W⊤ε).

As a result, with simple algebra we obtain

E
[
(ynew − ŷnew)2|I

]
− E

[
(ynew − ŷnewb )2|I

]
=E

[(
(unew)⊤ − (wnew)⊤(W⊤W )−1W⊤U)(β0 − β̂)

)2
|I
]

− E
[(
(unew)⊤ − (wnew)⊤(W⊤W )−1W⊤U)β0

)2 |I]
− 2E

[
((unew)⊤ − (wnew)⊤(W⊤W )−1W⊤U)β̂(εnew − (wnew)⊤(W⊤W )−1W⊤ε)|I

]
:=S1 − S2 − S3.

Below we analyze S1 to S3 one by one. We start with S2. Using the independence of wnew

with W , U , I, and β0, the fact that wnew has bounded variance, we have

E
[
((wnew)⊤(W⊤W )−1W⊤Uβ0)

2|I
]
≍ ∥(W⊤W )−1W⊤Uβ0∥2 = ∥(W⊤W )−1W⊤Σ

1/2
1 ZΣ

1/2
2 β0∥2.
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Let x ∈ Rn be a standard Gaussian vector, independent of (W,Z, β0). Since ZΣ
1/2
2 β0 and

x∥Σ1/2
2 β0∥ share the same distribution, ∥(W⊤W )−1W⊤Σ

1/2
1 x∥2 ≍P ∥(W⊤W )−1W⊤Σ

1/2
1 ∥2F by

Lemma 2, Tr(W⊤W )−1 = oP(p
−1nτ), and that ∥Σ1/2

2 β0∥2 ≍P τ , it follows that

∥(W⊤W )−1W⊤Σ
1/2
1 ZΣ

1/2
2 β0∥2 ≍P ∥Σ1/2

2 β0∥2∥(W⊤W )−1W⊤Σ
1/2
1 ∥2F ≍P oP(p

−1nτ 2). (D34)

Additionally, given that unew is mean zero, independent of the remaining terms, we have

E
[
(wnew)⊤(W⊤W )−1W⊤Uβ0(u

new)⊤β0|I
]
= 0. Therefore, we have established that

S2 = E
[
((unew)⊤β0)

2|I
]
+ oP(p

−1nτ 2) = ∥Σ1/2
2 β0∥2 + oP(p

−1nτ 2).

With respect to S1, we note that β̂ = n−1(n−1X⊤MWX+n−1pτ−1λI)−1X⊤MW (Uβ0+ε).

Define RX = (n−1X⊤MWX + n−1pτ−1λI)−1. By direct calculations, we have

E
[
((wnew)⊤(W⊤W )−1W⊤Uβ̂)2|I

]
≍ ∥(W⊤W )−1W⊤Uβ̂∥2

≤2n−2∥(W⊤W )−1W⊤URXX
⊤MWUβ0∥2 + 2n−2∥(W⊤W )−1W⊤URXX

⊤MW ε∥2. (D35)

For the second term in (D35), we first note that for any constant λ > 0,

∥RXX
⊤MWXRX∥ = ∥RUU

⊤MWURU∥ =
nλ1(n

−1U⊤MWU)

(λ1(n−1U⊤MWU) + n−1pτ−1λ)2
≍P p

−1n2τ 2,

since ∥n−1U⊤MWU∥ ≲P n−1 ∥U∥2 ≲P 1 + cn = o(n−1pτ−1) by Lemma 6. Therefore, by

Lemma 2 and using inequality Tr(AB) ≤ ∥A∥Tr(B), for any A = A⊤ and B ≥ 0, we have

n−2∥(W⊤W )−1W⊤URXX
⊤MW ε∥2

≍Pn
−2Tr((W⊤W )−1W⊤URXX

⊤MWXRXU
⊤W (W⊤W )−1)

=n−2Tr(RXX
⊤MWXRXU

⊤W (W⊤W )−2W⊤U)

≤n−2∥RXX
⊤MWXRX∥Tr(U⊤W (W⊤W )−2W⊤U)

≲Pp
−1τ 2Tr(U⊤W (W⊤W )−2W⊤U) ≤ p−1τ 2∥U⊤U∥Tr((W⊤W )−1) = oP(p

−1nτ 3).

Similarly, we can prove that the first term in (D35) is of order oP(p
−1nτ 3). Therefore, we

have
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E
[
((wnew)⊤(W⊤W )−1W⊤Uβ̂)2|I

]
= oP(p

−1nτ 3). (D36)

With (D34) and (D35), we have

E
[
((wnew)⊤(W⊤W )−1W⊤U(β0 − β̂))2|I

]
≤2E

[
((wnew)⊤(W⊤W )−1W⊤Uβ0)

2|I
]
+ 2E

[
((wnew)⊤(W⊤W )−1W⊤Uβ̂)2|I

]
= oP(p

−1nτ 2).

In addition, since unew is independent of I and wnew, we have

E
[
(unew)⊤((β0 − β̂)((wnew)⊤(W⊤W )−1W⊤U(β0 − β̂)|I

]
= 0. Therefore, we conclude

S1 = E
[
((unew)⊤(β0 − β̂))2|I

]
+ oP(p

−1nτ 2) = ∥Σ1/2
2 (β0 − β̂)∥2 + oP(p

−1nτ 2).

Finally we bound S3. Since unew and εnew are mean zero, mutually independent, and

independent of I, along with Eq. (D36), Lemma 2 and Cauchy-Schwartz inequality, we have

|S3| =
∣∣∣2E [(wnew)⊤(W⊤W )−1W⊤Uβ̂(wnew)⊤(W⊤W )−1W⊤ε|I

] ∣∣∣
≤ 2

(
E
[
((wnew)⊤(W⊤W )−1W⊤Uβ̂)2|I

])1/2 (
E
[
((wnew)⊤(W⊤W )−1W⊤ε)2|I

])1/2
≍P oP(p

−1/2n1/2τ 3/2)(Tr(W (W⊤W )−2W⊤))1/2 = oP(p
−1nτ 2).

In total, we conclude that

S1 − S2 − S3 = ∥Σ1/2
2 (β0 − β̂)∥2 − ∥Σ1/2

2 β0∥2 + oP(p
−1nτ 2).

Now we prove that,

pn−1τ−2(∥Σ1/2
2 (β̂ − β0)∥2 − ∥Σ1/2

2 β0∥2) P−→ α∗. (D37)

By Theorem 2, β̃ := n−1R̃UU
⊤(Uβ0 + ε) satisfies (D37) with β̂ being replaced by β̃, where

R̃U := (n−1U⊤U+n−1pτ−1λI)−1. Given that ∥Σ1/2
2 (β0− β̂)∥2 = ∥Σ1/2

2 (β0− β̃)+Σ
1/2
2 (β̂− β̃)∥2

and that ∥Σ1/2
2 (β0 − β̃)∥ ≍P ∥Σ1/2

2 β0∥ ≍P τ 1/2, it is easy to verify that (D37) follows from

∥β̂ − β̃∥2 = o(n2p−2τ 3). Below we show this bound is satisfied. Note that

∥β̂ − β̃∥2 ≤ 2

n2
∥RUU

⊤MW (Uβ0 + ϵ)−RUU
⊤(Uβ0 + ϵ)∥2 + 2

n2
∥(RU − R̃U)U

⊤(Uβ0 + ϵ)∥2

≤ 4

n2
∥RUU

⊤MW ε−RUU
⊤ε∥2 + 4

n2
∥RUU

⊤MWUβ0 −RUU
⊤Uβ0∥2
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+
4

n2
∥(RU − R̃U)U

⊤ε∥2 + 4

n2
∥(RU − R̃U)U

⊤Uβ0∥2.

For the first term, using ∥RU∥ ≲P np
−1τ , ∥U⊤U∥ ≲P p, and Lemma 2, we have

4

n2
∥RUU

⊤MW ε−RUU
⊤ε∥2 ≍P

1

n2
Tr((MWU − U)R2

U(U
⊤MW − U⊤))

=
1

n2
Tr(U⊤W (W⊤W )−1W⊤UR2

U) ≤
1

n2
∥R2

U∥∥U⊤U∥Tr(W (W⊤W )−1W⊤) ≲P p
−1τ 2 rank(W ).

Similarly, it can be shown that the second term is of order OP(p
−1τ 2 rank(W )). In addition,

by Lemma 2, and using the fact that Tr(AB) ≤ ∥A∥Tr(B) and ∥R̃U∥ ≲P np
−1τ , we have

4

n2
∥(RU − R̃U)U

⊤ε∥2 ≍P
1

n2
Tr(U(RU − R̃U)

2U⊤) ≤ 1

n2
∥U⊤U∥Tr((RU − R̃U)

2)

≲P
p

n2
Tr((RU(R̃

−1
U −R−1

U )R̃U)
2) =

p

n4
Tr((RUU

⊤W (W⊤W )−1W⊤UR̃U)
2)

≤ p

n4
∥RU∥2∥R̃U∥2∥U⊤U∥2Tr(W (W⊤W )−1W⊤) ≲P p

−1τ 4 rank(W ).

Similarly, the final term is of order OP(p
−1τ 4 rank(W )). To sum up, we have ∥β̂ − β̃∥2 =

O(p−1τ 2 rank(W )) = o(n2p−2τ 3), since rank(W ) = o(n2p−1τ).

E Technical Lemmas and Their Proofs

For completeness, the following section introduces a collection of lemmas, including proofs

for some. We start with the Convex Gaussian Min-max Theorem (CGMT), a pivotal the-

orem to our proof. For a detailed exposition of its proof, we direct readers to the work of

Thrampoulidis et al. (2015). The CGMT pertains to the following optimization problems:

Φ(G) := min
w∈Sw

max
u∈Su

u⊤Gw + ψ(w, u), and ϕ(g, h) := min
w∈Sw

max
u∈Su

∥w∥g⊤u− ∥u∥h⊤w + ψ(w, u),

where G ∈ Rm×n, g ∈ Rm, h ∈ Rn,Sw ⊂ Rn,Su ⊂ Rm, and ψ : Rn × Rm → R.

Lemma 1 (CGMT). Suppose that Sw and Su are compact sets, ψ is continuous on Sw ×
Su, and the entries of G, g, and h are i.i.d. Gaussian. Then we have P(Φ(G) < c) ≤
2P(ϕ(g, h) ≤ c), ∀c ∈ R. Moreover, if Sw and Su are convex sets, and ψ is convex-concave

on Sw × Su, then P(Φ(G) > c) ≤ 2P(ϕ(g, h) ≥ c), ∀c ∈ R.

The next lemma follows from Lemma B.26 from Bai and Silverstein (2009), which ad-

dresses the convergence of a quadratic form concerning a random vector with i.i.d. entries.
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Lemma 2. Let x = (x1, · · · , xn)⊤ be a random vector of i.i.d. entries. Assume that Exi =
0, Ex2i = 1, and Ex4i ≤ v4. Then, for any A ∈ Rn×n, it holds that x⊤Ax − Tr(A) =

OP

(√
v4Tr(AA⊤)

)
.

Lemma 3. Let x = (x1, · · · , xn)⊤ and y = (y1, · · · , ym)⊤ be two independent random vectors

with i.i.d. entries. Assume that each element has a mean of zero and a variance of one.

Then, for any A ∈ Rn×m, it holds that x⊤Ay = OP

(√
Tr(AA⊤)

)
.

Proof. The conclusion follows from the fact that E(x⊤Ay)2 = Tr(AA⊤).

The following result pertains to the Neumann series. A detailed proof and further dis-

cussion are available in Meyer (2000).

Lemma 4. If A is a square matrix with ∥A∥ < 1, then I−A is nonsingular and (I−A)−1 =∑∞
k=0A

k. As a consequence, ∥(I− A)−1 −∑ℓ
k=0A

k∥ ≤∑∞
k=ℓ+1 ∥A∥k = ∥A∥ℓ+1/(1− ∥A∥).

Lemma 5. Assume x = (x1, · · · , xn)⊤ and y = (y1, · · · , yp)⊤ are two independent random

vectors with i.i.d. sub-exponential random variables with their sub-exponential norm bounded

by K. Then for any A ∈ Rn×n and B ∈ Rn×p, there exists a constant c > 0 such that

P
(
|x⊤Ax− Ex⊤Ax| ≥ t

)
≤ 2 exp

(
−cmin

{
t2

K4∥A∥2F
,

t1/2

K∥A∥1/2
})

, (E1)

P
(
|x⊤By| ≥ t

)
≤ 2 exp

(
−cmin

{
t2

K4∥B∥2F
,

t1/2

K∥B∥1/2
})

. (E2)

Proof. Inequality (E1) is given by Proposition 1.1 presented in Götze et al. (2021) for the

case of symmetric A. To prove it for the asymmetric case, we use the fact that x⊤Ax =

x⊤(A + A⊤)x/2, so that we can apply (E1) to (A + A⊤)/2. Using triangle inequalities, we

have
∥∥(A+ A⊤)/2

∥∥2
F
≤ ∥A∥2F and

∥∥(A+ A⊤)/2
∥∥1/2 ≤ ∥A∥1/2, (E1) holds for asymmetric A.

To prove (E2), let z = (x⊤, y⊤)⊤ and C =

(
0n×n B

0p×n 0p×p

)
. Applying (E1), we obtain

P
(
|x⊤By| ≥ t

)
= P

(
|z⊤Cz| ≥ t

)
≤ 2 exp

(
−cmin

{
t2

K4∥C∥2F
,

t1/2

K∥C∥1/2
})

= 2 exp

(
−cmin

{
t2

K4∥B∥2F
,

t1/2

K∥B∥1/2
})

.

The next lemma is established in Bai and Silverstein (2009) and Chen and Pan (2012).
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Lemma 6. Suppose Z is an n×p matrix with i.i.d. Gaussian entries. Then for any positive

constant ϵ > 0, it holds that n−1Z⊤Z ≤ (1 + ϵ)(1 +
√
cn)

2, w.p.a.1, for cn = p/n ∈ [0,∞].

Lemma 7 (Convexity). Let O ⊆ Rd be open and convex and D be a dense subset of O. For

θ ∈ O, both Mn(θ) and M(θ) are convex in θ. If Mn(θ)
P−→ M(θ), for any θ ∈ D, then

supθ∈K |Mn(θ)−M(θ)| P−→ 0, for any compact subset K ⊂ O.

This lemma has been shown by Lemma 7.75 of Liese and Miescke (2008) and Cor. II.1 of

Andersen and Gill (1982). Next, we present a min-convergence theorem for functions defined

on an open set (0,∞), as shown by Lemma 10 of Thrampoulidis et al. (2018).

Lemma 8. Consider a sequence of proper, convex stochastic functions Mn : R+ → R, and a

deterministic functionM : R+ → R, satisfying (a)Mn(x)
P−→M(x), ∀x > 0; (b) there exists

z > 0 such that M(x) > infy>0M(y), ∀x ≥ z. Then we have infx>0Mn(x)
P−→ infx>0M(x).

Relatedly, we introduce a lemma for functions on a diverging sequence of closed sets.

Lemma 9. Consider a sequence of closed intervals {[xn, yn]}∞n=1 such that limn→∞ xn = −∞
and limn→∞ yn = +∞. Additionally, let there be a sequence of proper random and convex

functions Mn : [xn, yn] → R, and a convex, continuous, and deterministic function M : R →
R that satisfy: (a)Mn(x)

P−→M(x) for every x ∈ R; (b) there exists z > 0 such thatM(x) >

infy∈RM(y) holds for all |x| ≥ z. Then it holds that infx∈[xn,yn]Mn(x)
P−→ infx∈RM(x).

Proof. For n sufficiently large, z ∈ [xn, yn]. Assume x∗ ∈ [−z, z] minimizes M(x). Assump-

tion (b) in fact implies that x⋆ ∈ (−z, z) and that M(x⋆) = infx∈RM(x). Consider the event

inf |x|>z
x∈[xn,yn]

Mn(x) < Mn(x
∗). Under this event, there exists |zn| > z and zn ∈ [xn, yn] such

that Mn(zn) < Mn(x
∗). The geometry implies that there exists θn ∈ (0, 1), such that either

znθn + x⋆(1− θn) = z or znθn + x⋆(1− θn) = −z holds. Using convexity, we have

min(Mn(z),Mn(−z)) ≤ θnMn(zn) + (1− θn)Mn(x
∗) < Mn(x

∗).

By taking limits on both sides, we have min(M(z),M(−z)) ≤ M(x∗), which contradicts

Assumption (b). Therefore, w.p.a.1, we have inf |x|>z
x∈[xn,yn]

Mn(x) ≥ Mn(x
∗). Furthermore, by

Lemma 7, for all arbitrarily small ϵ > 0, w.p.a.1, sup|x|≤z |Mn(x)−M(x)| < ϵ. In addition, by

definition, there exists a sequence of zn, such that |zn| ≤ z and inf |x|≤zMn(x) ≥Mn(zn)− ϵ.

Combining these two inequalities with the fact that M(x⋆) minimizes M on R leads to

inf |x|≤zMn(x) ≥ Mn(zn) − ϵ ≥ M(zn) − 2ϵ ≥ M(x∗) − 2ϵ, w.p.a.1. On the other hand,
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inf |x|≤zMn(x) ≤Mn(x
∗)

P−→M(x∗). Since ϵ is arbitrary, we have inf |x|≤zMn(x)
P−→M(x∗).

Along with inf |x|>z
x∈[xn,yn]

Mn(x) ≥Mn(x
∗) and Mn(x

⋆)
P−→M(x∗) by (a), we have

inf
x∈[xn,yn]

Mn(x) = min

(
inf
|x|≤z

Mn(x), inf
|x|>z

x∈[xn,yn]

Mn(x)

)
P−→M(x∗).

Lemma 10. Suppose X is a standard Gaussian random variable, then for x > 0,

√
2√
π
exp

(
−x

2

2

)(
2x−3 − 12x−5 − 15x−7

)
≤ E(|X| − x)2+ ≤

√
2√
π
exp

(
−x

2

2

)(
2x−3 + 3x−5

)
.

Proof. With integration by parts, we find

E(|X| − x)2+ =

√
2

π

∫ ∞

x

(t− x)2 exp

(
−t

2

2

)
dt =

√
2

π

(
−x exp

(
−x

2

2

)
+ (x2 + 1)fG(x)

)
,

where fG(x) =
∫∞
x

exp(−t2/2)dt. Lemma 10 then follows from the tail inequality:

exp

(
−x

2

2

)(
1

x
− 1

x3
+

3

x5
− 15

x7

)
≤ fG(x) ≤ exp

(
−x

2

2

)(
1

x
− 1

x3
+

3

x5

)
.

Lemma 11. Given that X is a standard Gaussian random variable, the following inequalities

hold when x > 0 and x is sufficiently large:

E|X|(|X| − x)2+ ≤ 2xE(|X| − x)2+ and EX2(|X| − x)2+ ≤ 2x2E(|X| − x)2+.

Proof. We only present the proof for the first inequality, noting that the proof for the second

inequality follows a parallel methodology. By Lemma 10, with x sufficiently large we have

E(|X| − x)2+ =
2
√
2

x3
√
π
exp

(
−x

2

2

)
+ o

(
1

x3

)
exp

(
−x

2

2

)
.

By integration by parts, we arrive at

E|X|(|X| − x)2+ =
2
√
2

x2
√
π
exp

(
−x

2

2

)
+ o

(
1

x2

)
exp

(
−x

2

2

)
.

The desired result directly follows from the above two estimates.

Definition 1. A centered random variable X ∈ SE (ν2, α) with ν > 0 and α > 0, if EeλX ≤
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e
λ2ν2

2 , for all λ such that |λ| < α−1.

Lemma 12. Let {xk}∞k=1 be a sequence of diverging positive numbers. Then as p → ∞, we

have w.p.a.1, ∥Σ2b0∥∞ < xpq
−1/2log(p) and ∥Σ1/2

2 h∥∞ < xp
√
log(p), where Σ2 and b0 are

defined in Assumptions 1 and 3, respectively, and h ∈ Rp is a standard Gaussian vector.

Proof. We only present the proof for the first inequality, noting that the proof for the second

inequality follows similarly. By definition, there exist b1i ∼ B(1, q) and a sub-exponential

random variable b2i such that b0,i = q−1/2b1ib2i. Note that b1ib2i is still sub-exponential.

Without loss of generality, assume q1/2b0,i = b1ib2i ∈ SE(1, 1).

Write the (i, j)-th element of Σ2 as Σ2,ij. By the properties of sub-exponential vari-

ables, we have
(
Σ2q

1/2b0
)
i
∈ SE

(∑p
j=1Σ

2
2,ij,maxj |Σ2,ij|

)
. Given that

∑p
j=1Σ

2
2,ij = (Σ2

2)i,i ≤
λ1(Σ

2
2) = C2

2 and maxj |Σ2,ij| ≤ C2, we conclude that
(
Σ2q

1/2b0
)
i
∈ SE(C2

2 , C2). The tail

bound of sub-exponential variables yields P
(
|(Σ2q

1/2b0)i| > xplog(p)
)
≤ 2 exp

(
−xp log(p)

2C2

)
.

Therefore, applying union bound inequality, we obtain

P
(
∥Σ2b0∥∞ > xpq

−1/2log(p)
)
≤ 2p exp

(
−xp log(p)

2C2

)
→ 0.

Lemma 13. For the event An defined in Eq. (D2), we have P(An) ≥ 1 − p−1 as p is

sufficiently large.

Proof. We start with the second event in An. Note that

n∑
k=1

x̃2k =X
⊤
·,iΣ

−1
ε X·,i ≤ c−1

ε X⊤
·,iX·,i = c−1

ε e⊤i Σ
1/2
2 Z⊤Σ1ZΣ

1/2
2 ei

≤c−1
ε C1∥ZΣ1/2

2 ei∥2 d
= c−1

ε C1∥Σ1/2
2 ei∥2χ2(n) ≤ c−1

ε C1C2χ
2(n),

where ei is the i-th standard basis vector. By Lemma 5, with probability at least 1 −
2 exp(−cp) for some fixed constant c > 0, χ2(n) ≤ 5n, which implies the second event.

For the first event, we observe that under the second event,

p−1/2τ 1/2
∣∣∣ n∑
k=1

x̃kỹk

∣∣∣ = p−1/2τ 1/2
∣∣∣β0,i n∑

k=1

x̃2k +
n∑

k=1

x̃kzk

∣∣∣ ≤ C̃np−1/2τ 1/2|β0,i|+ p−1/2τ 1/2
∣∣∣ n∑
k=1

x̃kzk

∣∣∣
= C̃p−1τn|q−1/2b1ib2i|+ p−1/2τ 1/2

∣∣∣ n∑
k=1

x̃kzk

∣∣∣ ≤ C̃p−1q−1/2τn|b2i|+ p−1/2τ 1/2
∣∣∣ n∑
k=1

x̃kzk

∣∣∣.
Using the property of a sub-exponential random variable, for some constant c > 0,
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with probability at least 1 − 2 exp(−c log2(p)), we have |b2| ≤ log2(p)/2, which im-

plies C̃p−1q−1/2τn|b2i| ≤ C̃p−1q−1/2τn log2(p)/2 = o(C̃p−1/2τ 1/2n1/2 log2(p)/2) by As-

sumption 4. In addition, by Lemma 5, with probability at least 1 − 2 exp(−c log2(p)),
we have

∣∣∣∑n
k=1 x̃kzk

∣∣∣ ≤ C̃n1/2 log2(p)/2, which implies p−1/2τ 1/2
∣∣∣∑n

k=1 x̃kzk

∣∣∣ ≤
C̃p−1/2τ 1/2n1/2 log2(p)/2.

In sum, using the facts that max(exp(−cp), exp(−c log2(p))) = o(p−1), we conclude that

with probability at least 1− p−1, An holds.

Lemma 14. Under the conditions of Theorem 2, define Sn
w := {w

∣∣cnτ−1σxσβ − Kα ≤
cn∥w∥ ≤ cnτ

−1σxσβ +Kα} for some Kα such that |α∗
2| < Kα. If the solution ŵB to

argmin
w∈Sn

w

cn
n

∥∥∥τ 1/2Σ1/2
1 Zw − τ−1ε

∥∥∥2 + c2nλ
∥∥∥Σ−1/2

2 w + τ−3/2β0

∥∥∥2 − cnτ
−2

n
∥ε∥2 − Cϕ

n

satisfies cn∥ŵB∥ − cnτ
−1σxσβ → α∗

2, then the same holds true for ŵ of Eq. (D6).

Proof. The proof of this lemma is almost identical to Lemma 5 of Thrampoulidis et al. (2018)

and is therefore omitted here.

Lemma 15. Let ŵ denote an optimal solution of Eq. (D10). Regarding ϕ(g, h) and ϕS̃c
n
(g, h),

as introduced and discussed in relation to Eq. (D11), suppose there are constants ϕ̄ and

ϕ̄S̃c
n
with ϕ̄ < ϕ̄S̃c

n
, such that for all η > 0, the following hold w.a.p.1 as n → ∞: (a)

ϕ(g, h) < ϕ̄+ η, (b) ϕS̃c
n
(g, h) > ϕ̄S̃c

n
− η. Under these conditions, we have ŵ ∈ S̃n w.p.a.1.

Proof. Denote Φ as the optimal value of the minimization problem in Eq. (D10), and ΦS̃c
n

as the optimal value when we impose the constraint w ∈ Sn
w ∩ S̃c

n. It is evident that ŵ ∈ S̃n

whenever ΦS̃c
n
> Φ. In what follows, we show the latter statement holds w.a.p.1.

Let ϕP := min
w∈Sn

w

max
u∈Sn

u
v

Rn(w, v, u) and ϕ
D := max

u∈Sn
u

v

min
w∈Sn

w
Rn(w, v, u), where Rn(w, v, u) is

given by Eq. (D11). Using min-max inequality (Lemma 36.1 in Rockafellar (1970)), we have

ϕP
S̃c
n
:= min

w∈Sn
w∩S̃c

n

max
u∈Sn

u
v

Rn(w, v, u) =
min

w∈Sn
w∩S̃c

n

max
0≤δ≤4τ−1

√
C1Cε

v

max
∥u∥=δ Rn(w, v, u)

≥ max
0≤δ≤4τ−1

√
C1Cε

v

min
w∈Sn

w∩S̃c
n

max
∥u∥=δ Rn(w, v, u) = ϕS̃c

n
(g, h), and (E3)

ϕD = max
u∈Sn

u
v

min
w∈Sn

w
Rn(w, v, u) =

max
0≤δ≤4τ−1

√
C1Cε

v

max
∥u∥=δ

min
w∈Sn

w
Rn(w, v, u)

≤ max
0≤δ≤4τ−1

√
C1Cε

v

min
w∈Sn

w

max
∥u∥=δ Rn(w, v, u) = ϕ(g, h). (E4)
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Utilizing CGMT (Lemma 1), and in conjunction with Eq. (E3), we have

P
(
ΦS̃c

n
< ϕ̄S̃c

n
− κ

3

)
≤ 2P

(
ϕP
S̃c
n
≤ ϕ̄S̃c

n
− κ

3

)
≤ 2P

(
ϕS̃c

n
(g, h) ≤ ϕ̄S̃c

n
− κ

3

)
. (E5)

Similarly, employing CGMT along with Eq. (E4), we deduce:

P
(
Φ > ϕ̄+

κ

3

)
≤ 2P

(
ϕD ≥ ϕ̄+

κ

3

)
≤ 2P

(
ϕ(g, h) ≥ ϕ̄+

κ

3

)
. (E6)

Under assumptions (a) and (b) in this lemma, the right-hand sides of Eqs. (E5) and (E6)

vanish as p → ∞, given the choice of η = κ/3 for κ := ϕ̄S̃c
n
− ϕ̄. Consequently, w.a.p.1, we

have: ΦS̃c
n
≥ ϕ̄S̃c

n
− κ/3 > ϕ̄+ κ/3 ≥ Φ, which concludes the proof.

Lemma 16. The objective function of Eq. (D14) is convex in α and jointly concave in (δ, v).

Proof. First, we prove the objective function is convex in α = ∥w∥. We revisit Eq. (D11):

max
0≤δ≤4τ−1

√
C1Cε

v

min
w∈Sn

w

max
∥u∥=δ

cnτ
1/2

√
n
αg⊤u− cnτ

1/2

√
n

∥u∥h⊤w − cnτ
−1

√
n
u⊤Σ

−1/2
1 ε− cn∥Σ−1/2

1 u∥2
4

+ c2nλv
⊤w + c2nλτ

−3/2v⊤Σ
1/2
2 β0 −

c2nλ∥Σ1/2
2 v∥2
4

− cnτ
−2

n
∥ε∥2.

Note that the term f(α, u) := cnτ1/2√
n
αg⊤u − cnτ−1

√
n
u⊤Σ

−1/2
1 ε − cn∥Σ−1/2

1 u∥2
4

is convex in

α. After maximizing over the direction of u, the term remains convex in α since

max∥u∥=δ f(θα1+(1−θ)α2, u) ≤ max∥u∥=δ{θf(α1, u)+(1−θ)f(α2, u)} ≤ θmax∥u∥=δ f(α1, u)+

(1 − θ)max∥u∥=δ f(α2, u), for θ ∈ (0, 1). Note that from Eq. (D12), max∥u∥=δ f(α, u) =

− cnδ2

4
µn(α, δ)+

cn
n
(τ 1/2αg−τ−1Σ

−1/2
1 ε)⊤(Σ−1

1 −µn(α, δ)I)−1(τ 1/2αg−τ−1Σ
−1/2
1 ε), which yield

the first two terms in Eq. (D14). Meanwhile, the term −∥cnλv−n−1/2τ 1/2δh∥α is also convex

in α. Consequently, we deduce that the objective function of Eq. (D14) is convex in α.

Next, we demonstrate that this function is jointly concave in (δ, v). It is easy to verify that

−∥cnλv−n−1/2τ 1/2δh∥α is jointly concave in (δ, v), since α ≥ 0. Moreover, λτ−3/2v⊤Σ
1/2
2 β0−

λ∥Σ1/2
2 v∥2/4 is concave in v. Therefore, it suffices to prove

−δ
2

4
µn(α, δ) +

1

n
(τ 1/2αg − τ−1Σ

−1/2
1 ε)⊤(Σ−1

1 − µn(α, δ)I)−1(τ 1/2αg − τ−1Σ
−1/2
1 ε) (E7)

is concave in δ. Let the eigenvalues and corresponding normalized eigenvectors of Σ1 be

{(λi, vi)}ni=1, and let wi = (τ 1/2αg − τ−1Σ
−1/2
1 ε)⊤vi, for i = 1, 2, . . . , n. Then (E7) equals
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−δ
2

4
µn(α, δ) +

1

n

n∑
i=1

1

1/λi − µn(α, δ)
w2

i . (E8)

The first order derivative of the function (E8) with respect to δ is

− δ

2
µn(α, δ)−

δ2

4
∂δµn(α, δ) +

∂δµn(α, δ)

n

n∑
i=1

1

(1/λi − µn(α, δ))2
w2

i = −δ
2
µn(α, δ), (E9)

where the last equation follows from the definition of the function µn(α, δ):

1

n

n∑
i=1

1

(1/λi − µn(α, δ))2
w2

i =
δ2

4
. (E10)

Further, the second-order derivative of the function (E8) with respect to δ can be calculated

as: −1
2
µn(α, δ)− δ

2
∂δµn(α, δ). By the chain rule of differentiation, ∂δµn(α, δ) is the reciprocal

of ∂µnδ. The latter can be calculated directly using the definition of µn via Eq. (E10):

∂µnδ =

(
1

n

n∑
i=1

1

(1/λi − µn)2
w2

i

)−1/2

· 2
n

n∑
i=1

1

(1/λi − µn)3
w2

i .

With this, we can write the second-order derivative as follows:

−1

2
µn(α, δ)−

δ

2
∂δµn(α, δ) = −1

2
µn −

1

2
·
∑n

i=1
1

(1/λi−µn)2
w2

i∑n
i=1

1
(1/λi−µn)3

w2
i

= −1

2
·
∑n

i=1
1/λi

(1/λi−µn)3
w2

i∑n
i=1

1
(1/λi−µn)3

w2
i

.

Since Σ−1
1 − µnI is positive semidefinite, the right-hand-side is no larger than zero, which

concludes the proof.

Lemma 17. For Q̃n = Q̃n(α2, δ3, γ1) in Eq. (D16), Eqs. (D17) and (D18) hold.

Proof. The notation below is defined in the proof of Theorem 2. Let δ2 = δ∗2 + c
−1/2
n δ3.

First, we demonstrate that cnτ
−1µn(α, δ)− cnµ(σxσβ, δ

∗
1, δ2)

P−→ 0. Let f(x) := 1
n
(τ 1/2αg −

τ−1Σ
−1/2
1 ε)⊤(Σ−1

1 −xI)−2(τ 1/2αg− τ−1Σ
−1/2
1 ε). Recall that µn(α, δ) is the solution to f(x) =

δ2/4. Note that f(x) exhibits a monotonic increase in x when x ≤ 1/C1. Therefore, it

suffices to show that, given any arbitrarily small ϵ > 0, w.p.a.1, the following inequalities

hold: cnτf(τµ(σxσβ, δ
∗
1, δ2)+τc

−1
n ϵ)−cnδ2τ/4 > c+ > 0 and cnτf(τµ(σxσβ, δ

∗
1, δ2)−τc−1

n ϵ)−
cnδ

2τ/4 < c− < 0, for some constants c+ and c−.

By Lemmas 2 and 3, we can deduce the following equations:
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cnτ
−1

n
ε⊤Σ

−1/2
1

(
Σ−1

1 − τµ(σxσβ, δ
∗
1, δ2)I− τc−1

n ϵI
)−2

Σ
−1/2
1 ε

− cnτ
−1

n
Tr
[
Σ1/2

ε Σ
−1/2
1

(
Σ−1

1 − τµ(σxσβ, δ
∗
1, δ2)I− τc−1

n ϵI
)−2

Σ
−1/2
1 Σ1/2

ε

]
= OP(cnτ

−1n−1/2),

cnτ
2

n
α2g⊤

(
Σ−1

1 − τµ(σxσβ, δ
∗
1, δ2)I− τc−1

n ϵI
)−2

g

− cnα
2τ 2

n
Tr
[(
Σ−1

1 − τµ(σxσβ, δ
∗
1, δ2)I− τc−1

n ϵI
)−2
]
= OP(cnn

−1/2),

cnτ
1/2α

n
εΣ

−1/2
1

(
Σ−1

1 − τµ(σxσβ, δ
∗
1, δ2)I− τc−1

n ϵI
)−2

g = OP(cnτ
−1/2n−1/2).

Therefore, using the definition of f(·) we can deduce that:

cnτf(τµ(σxσβ, δ
∗
1, δ2) + τc−1

n ϵ)

− cnτ
−1

n
Tr
[
Σ1/2

ε Σ
−1/2
1

(
Σ−1

1 − τµ(σxσβ, δ
∗
1, δ2)I− τc−1

n ϵI
)−2

Σ
−1/2
1 Σ1/2

ε

]
− cnα

2τ 2

n
Tr
[(
Σ−1

1 − τµ(σxσβ, δ
∗
1, δ2)I− τc−1

n ϵI
)−2
]
= OP(cnτ

−1n−1/2) = oP(1). (E11)

Note that for sufficiently small x such that x∥Σ1∥ < 1,

τ−1

n
Tr
[
Σ1/2

ε Σ
−1/2
1

(
Σ−1

1 − xI
)−2

Σ
−1/2
1 Σ1/2

ε − Σ1/2
ε Σ

1/2
1 (I+ 2xΣ1) Σ

1/2
1 Σ1/2

ε

]
=
τ−1

n
Tr
[
Σ1/2

ε Σ
1/2
1 (I− xΣ1)

−2Σ
1/2
1 Σ1/2

ε − Σ1/2
ε Σ

1/2
1 (I+ 2xΣ1) Σ

1/2
1 Σ1/2

ε

]
≤τ−1C1Cε∥ (I− xΣ1)

−2 − (I+ 2xΣ1) ∥ ≲ τ−1x2,

where we apply Lemma 4 in the last inequality. As a consequence, we have:

τ−1

n
Tr
[
Σ1/2

ε Σ
−1/2
1

(
Σ−1

1 − τµ(σxσβ, δ
∗
1, δ2)I− τc−1

n ϵI
)−2

Σ
−1/2
1 Σ1/2

ε

]
=
1

n
Tr
[
Σ1/2

ε Σ
−1/2
1

(
τ−1Σ2

1 + 2
(
µ(σxσβ, δ

∗
1, δ2) + c−1

n ϵ
)
Σ3

1

)
Σ

−1/2
1 Σ1/2

ε

]
+O(τ)

=τ−1σ2
εθ1 + 2(µ(σxσβ, δ

∗
1, δ2) + c−1

n ϵ)σ2
εθ3 +O(τ) + o(c−1

n ), (E12)

where the last equation follows by Assumption 5. By the same argument, it follows that:

α2τ 2

n
Tr
[(
Σ−1

1 − τµ(σxσβ, δ
∗
1, δ2)I− τc−1

n ϵI
)−2
]
= σ2

xσ
2
βθ4 +O(τ) + o(c−1

n ).

Applying the above estimates to the left-hand-side of (E11), we can deduce that:
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cnτf(τµ(σxσβ, δ
∗
1, δ2) + τc−1

n ϵ)− cnδ
2τ

4

= cnτ
−1σ2

εθ1 + 2cn(µ(σxσβ, δ
∗
1, δ2) + c−1

n ϵ)σ2
εθ3 + cnσ

2
xσ

2
βθ4 − cn

τ−1(δ∗1)
2 + 2δ∗1δ2
4

+ oP(1)

= 2cn(µ(σxσβ, δ
∗
1, δ2) + c−1

n ϵ)σ2
εθ3 + cnσ

2
xσ

2
βθ4 −

cnδ
∗
1δ2
2

+ oP(1).

By the definition of µ(σxσβ, δ
∗
1, δ2), the right-hand side of the above equation is positive

w.p.a.1. The proof of the other inequality is similar. Hence, we have proved

cnτ
−1µn(α, δ)− cnµ(σxσβ, δ

∗
1, δ2)

P−→ 0. (E13)

Next, to analyze Q̃n, we first investigate the limiting behavior of:

−δ
2

4
µn(α, δ) +

1

n

(
τ 1/2αg − τ−1Σ

−1/2
1 ε

)⊤ (
Σ−1

1 − µn(α, δ)I
)−1
(
τ 1/2αg − τ−1Σ

−1/2
1 ε

)
.

By (E13), we have ∥µn(α, δ)Σ1∥ = OP(τ). Applying Lemma 4 again, we deduce:

∥
(
Σ−1

1 − µn(α, δ)I
)−2 − Σ2

1 − 2µn(α, δ)Σ
3
1 − 3µ2

n(α, δ)Σ
4
1∥ ≲P τ

3

∥
(
Σ−1

1 − µn(α, δ)I
)−1 − Σ1 − µn(α, δ)Σ

2
1 − µ2

n(α, δ)Σ
3
1∥ ≲P τ

3.

Furthermore, by the fact that ∥τ 1/2αg − τ−1Σ
−1/2
1 ε∥ = OP(nτ

−1) and Eq. (D13),

δ2

4
µn(α, δ) =

1

n
(τ 1/2αg − τ−1Σ

−1/2
1 ε)⊤(µn(α, δ)Σ

2
1 + 2µ2

n(α, δ)Σ
3
1)(τ

1/2αg − τ−1Σ
−1/2
1 ε) +OP(τ).

With a similar approach, we have

1

n

(
τ 1/2αg − τ−1Σ

−1/2
1 ε

)⊤ (
Σ−1

1 − µn(α, δ)I
)−1
(
τ 1/2αg − τ−1Σ

−1/2
1 ε

)
=

1

n

(
τ 1/2αg − τ−1Σ

−1/2
1 ε

)⊤ (
Σ1 + µn(α, δ)Σ

2
1 + µ2

n(α, δ)Σ
3
1

) (
τ 1/2αg − τ−1Σ

−1/2
1 ε

)
+OP(τ).

As a consequence, based on Lemmas 2 and 3, as well as the definition of α2 and the fact

that cnτ
−1µn(α, δ)− cnµ(σxσβ, δ

∗
1, δ2)

P−→ 0, we have:

− cnδ
2

4
µn(α, δ) +

cn
n

(
τ 1/2αg − τ−1Σ

−1/2
1 ε

)⊤ (
Σ−1

1 − µn(α, δ)I
)−1
(
τ 1/2αg − τ−1Σ

−1/2
1 ε

)
=
cn
n

(
τ 1/2αg − τ−1Σ

−1/2
1 ε

)⊤
(Σ1 − µ2

n(α, δ)Σ
3
1)
(
τ 1/2αg − τ−1Σ

−1/2
1 ε

)
+OP(cnτ)
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= cnτ
−1σ2

xσ
2
β − cnσ

2
εθ3µ

2(σxσβ, δ
∗
1, δ2) + 2σxσβα2 +

cnτ
−2

n
∥ε∥2 + oP(1). (E14)

Finally, we examine the remainder term that contributes to Q̃n:

c2nλ
2

4

(
τ−3/2Σ

1/2
2 β0 +

α2δτ 1/2√
nγ

h

)⊤(
λ

4
Σ2 +

cnα
2λ2

2γ
I
)−1(

τ−3/2Σ
1/2
2 β0 +

α2δτ 1/2√
nγ

h

)
− cnτα

2δ2

2γn
∥h∥2.

Using Lemmas 2-3, p1/2τ−1n−1q−1/2 = o(1) by Assumption 4, and the assumptions on Σ2,

this term converges in probability to:

c2nλ
2τ−2σ2

β

4p
Tr

[
Σ

1/2
2

(
λ

4
Σ2 +

cnα
2λ2

2γ
I
)−1

Σ
1/2
2

]
+ cnτ Tr

[
cnλ

2α4δ2

4nγ2h

(
λ

4
Σ2 +

cnα
2λ2

2γ
I
)−1

− α2δ2

2γn
I

]

=
c2nλ

2τ−2σ2
β

4p
Tr

[
2γ

cnα2λ2
Σ2 +

γ2h
c2nα

4λ3
Σ2

2

]
+ cnτ Tr

[
− δ2

4cnnλ
Σ2 +

δ2γ

8c2nnα
2λ2

Σ2
2

]
+ on(1)

=
cnγn1

2
τ−1 − γ21

4σ2
βλ
θ2 −

γ1α2

σxσβ
− τ−1 (δ

∗
1)

2σ2
xcn

4λ
− cnσ

2
xδ

∗
1δ2

2λ
+

(δ∗1)
2γ1σ

2
x

8λ2σ2
β

θ2 + on(1),

where we apply Lemma 4 and the same argument in proving Eq. (E12). Combining this

estimate with (E14) we conclude that

Q̃n = cnτ
−1σ2

xσ
2
β − τ−1 (δ

∗
1)

2σ2
xcn

4λ
− cnσ

2
εθ3µ

2(σxσβ, δ
∗
1, δ2) + 2σxσβα2 −

γ21
4σ2

βλ
θ2 −

γ1α2

σxσβ

− cnδ
∗
1δ2σ

2
x

2λ
+

(δ∗1)
2γ1σ

2
x

8λ2σ2
β

θ2 − Cϕ
n + oP(1)

= −δ
2
3θ1
4θ3

+ 2σxσβα2 −
γ21

4σ2
βλ
θ2 −

γ1α2

σxσβ
+

(δ∗1)
2γ1σ

2
x

8λ2σ2
β

θ2 + oP(1).

We now proceed to establish Claims (i) to (ii). Let Kδ3 be the interval [−c1/2n (τ−1δ∗1 +

δ∗2), 4c
1/2
n τ−1

√
C1Cε − c

1/2
n (τ−1δ∗1 + δ∗2)]. It is sufficient to demonstrate that, for any compact

set A ⊂ [−Kα, Kα], the following equation holds:

ϕA(g, h) := min
α2∈A

max
γ1>0

δ3∈Kδ3

Q̃n(α2, δ3γ1)
P−→ min

α2∈A
max
γ1>0
δ3∈R

Q̃(α2, δ3, γ1). (E15)

This is because based on this result, we can deduce

ϕ(g, h) = ϕ[−Kα,Kα](g, h)
P−→ min

α2∈[−Kα,Kα]
max
γ1>0
δ3∈R

Q̃(α2, δ3, γ1),
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ϕS̃c
n
(g, h) = min{ϕ[−Kα,α∗

2−ϵ](g, h), ϕ[α∗
2+ϵ,Kα](g, h)}

P−→ min
α2∈[−Kα,α∗

2−ϵ]∪[α∗
2+ϵ,Kα]

max
γ1>0
δ3∈R

Q̃(α2, δ3, γ1),

which lead to (i) and (ii).

Fix α2 ∈ A and γ1 > 0, and observe that limδ3→±∞ Q̃(α2, δ3, γ1) → −∞. By the concave

version of the Lemma 9, we conclude that maxδ3∈Kδ3
Q̃n(α2, δ3, γ1)

P−→ maxδ3∈R Q̃(α2, δ3, γ1).

Since Q̃n is jointly concave in (δ3, γ1), after maximizing with respect to δ3, the function should

remain concave in γ1. Moreover, consider the following equation: maxδ3∈R Q̃(α2, δ3, γ1) =

2σxσβα2 − γ2
1

4σ2
βλ
θ2 − γ1α2

σxσβ
+

(δ∗1)
2γ1σ2

x

8λ2σ2
β
θ2. As a result, limγ1→∞maxδ3∈R Q̃(α2, δ3, γ1) → −∞.

By Lemma 8, we conclude that max γ1>0
δ3∈Kδ3

Q̃n(α2, δ3, γ1)
P−→ max γ1>0

δ3∈R
Q̃(α2, δ3, γ1). Since

Q̃n(α2, δ3, γ1) is convex in α2, it should retain its convexity in α2 after being maximized

with respect to δ2 and γ1. Since the above equation holds for any α2 ∈ A, by Lemma 7, we

conclude that Eq. (E15) holds. This concludes the proof of Claims (i) and (ii).

The first-order condition implies a unique solution: α∗
2 := argminα2

max γ1>0
δ3∈R

Q̃(α2, δ3, γ1),

which is given by θ2σ
3
x

(
σ2
εθ1

2λ2σβ
− σβ

λ

)
. Thus, Claim (iii) holds true, concluding the proof.

Lemma 18. Under the conditions of Theorem 3, there exists a constant c̃ > 0 that depends

solely on fixed constants, such that w.p.a.1, inequality (D24) holds. In addition, as n→ ∞,

for any given fixed λ > 0, Eq. (D25) holds.

Proof. Let us fix a constant c̃ such that the inequality
c22σ

2
ε

2Kc̃2
− 4C2

2
(1+

√
cn)2

cnc̃
> 100 remains

true as n, p→ ∞. This is possible because (1 +
√
cn)

2/cn is bounded as n, p→ ∞.

Let S := {λj = ϵ + p−9(j − 1) : 1 ≤ j ≤ 1 + [p9(c̃τ−1 − ϵ)]}. Given τ−1 = o(p), the

cardinality of the set satisfies |S| ≤ p10. By definition, for any λ ∈ [ϵ, c̃τ−1], there exists a

λj∗ ∈ S such that |λ − λj∗| ≤ p−9. By Eq. (D23), we have |R̂K−CV (λ) − R̂K−CV (λj∗)| ≤
C̃|λ− λj∗ | ≤ C̃p−9. Therefore, if we show that

inf
λj∈S

{
R̂K−CV (λj)−

1

n
∥ε∥2 − ∥Σ1/2

2 β0∥2
}
> np−1τ 2 (E16)

holds w.p.a.1, we have

inf
λ∈[ϵ,c̃τ−1]

{
R̂K−CV (λj)−

1

n
∥ε∥2 − ∥Σ1/2

2 β0∥2
}
> np−1τ 2 − C̃p−9 >

np−1τ 2

2
, (E17)

which implies Eq. (D24). By Eq. (D19), it is easy to verify that we only need to prove:

inf
λj∈S

{
n−1K∥Z(i)Σ

1/2
2 (β̂i

λj
− β0)∥2 − 2n−1Kε(i)Z(i)Σ

1/2
2 (β̂i

λj
− β0)− ∥Σ1/2

2 β0∥2
}
> np−1τ 2
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holds w.p.a.1 for all i = 1, . . . , K. By the independence of Z(i) and β̂
i
λj
, the first term on the

left-hand-side is distributed as: n−1K∥Z(i)Σ
1/2
2 (β̂i

λj
− β0)∥2 d

= n−1Kχ2 (K−1n) ∥Σ1/2
2 (β̂i

λj
−

β0)∥2, where χ2 (K−1n) denotes a Chi-squared random variable with K−1n degrees of free-

dom. Consequently, we can deduce that:

P

(∣∣∣n−1K∥Z(i)Σ
1/2
2 (β̂i

λj
− β0)∥2 − ∥Σ1/2

2 (β̂i
λj

− β0)∥2
∣∣∣ ≥ log(p)√

n
∥Σ1/2

2 (β̂i
λj

− β0)∥2
)

= P

(∣∣n−1Kχ2
(
K−1n

)
− 1
∣∣ ≥ log(p)√

n

)
≤ 2 exp(−c̃1 log2(p)),

where the last step uses Lemma 5, and c̃1 is a fixed positive constant. Analogously, we have:

P

(∣∣∣n−1Kε(i)Z(i)Σ
1/2
2 (β̂i

λj
− β0)

∣∣∣ ≥ log(p)√
n

∥Σ1/2
2 (β̂i

λj
− β0)∥

)
≤ 2 exp(−c̃2 log2(p)),

with c̃2 being another fixed positive constant. For simplicity, we consolidate the constants

c̃1 and c̃2 into a unified constant denoted as c̃1. By the union bound inequality, we have that

with probability exceeding 1− 4p10 exp(−c̃1 log2(p)), the following relation holds:

inf
λj∈S

{
n−1K∥Z(i)Σ

1/2
2 (β̂i

λj
− β0)∥2 − 2n−1Kε(i)Z(i)Σ

1/2
2 (β̂i

λj
− β0)− ∥Σ1/2

2 β0∥2
}

≥ inf
λj∈S

{(
1− log(p)√

n

)
∥Σ1/2

2 (β̂i
λj

− β0)∥2 −
log(p)√

n
∥Σ1/2

2 (β̂i
λj

− β0)∥ − ∥Σ1/2
2 β0∥2

}
.

Assume for now that ∥Σ1/2
2 (β̂i

λj
− β0)∥2 − ∥Σ1/2

2 β0∥2 ≥ 50np−1τ 2 holds. In this sce-

nario,
(
1− log(p)√

n

)
∥Σ1/2

2 (β̂i
λj

− β0)∥2 − log(p)√
n
∥Σ1/2

2 (β̂i
λj

− β0)∥ is monotonically increasing in

∥Σ1/2
2 (β̂i

λj
− β0)∥ since log(p)/

√
n = o(τ), hence it achieves its minimum when ∥Σ1/2

2 (β̂i
λj

−
β0)∥2 − ∥Σ1/2

2 β0∥2 = 50np−1τ 2. As a result, it can be shown that
(
1− log(p)√

n

)
∥Σ1/2

2 (β̂i
λj

−
β0)∥2 − log(p)√

n
∥Σ1/2

2 (β̂i
λj

− β0)∥ − ∥Σ1/2
2 β0∥2 ≥ np−1τ 2. Therefore, we only need to prove

infλj∈S{∥Σ1/2
2 (β̂i

λj
− β0)∥2 − ∥Σ1/2

2 β0∥2} ≥ 50np−1τ 2 holds w.p.a.1.

We now establish a uniform lower bound for ∥Σ1/2
2 (β̂i

λj
− β0)∥2 − ∥Σ1/2

2 β0∥2, which can

be written as: ∥Σ1/2
2 β̂i

λj
∥2 − 2β⊤

0 Σ2β̂
i
λj
. By direct calculation, we have for each i,

∥Σ1/2
2 β̂i

λj
∥2 ≥ c2∥β̂i

λj
∥2 = c2

∥∥∥∥∥ 1n
(
1

n
X⊤

(−i)X(−i) + cnλjI
)−1

X(−i)y(−i)

∥∥∥∥∥
2

≥ c2
n2

∥∥∥∥ 1nX⊤
(−i)X(−i) + cnλjI

∥∥∥∥−2 ∥∥X(−i)y(−i)

∥∥2 ≥ c2
n2

(
C2(1 +

√
cn)

2 + cnλj
)−2 ∥X⊤

(−i)y(−i)∥2.
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Further, by Lemmas 2 and 3, we have

∥X⊤
(−i)y(−i)∥2 = ε⊤(−i)X(−i)X

⊤
(−i)ε(−i) + 2ε⊤(−i)X(−i)X

⊤
(−i)X(−i)β0 + β⊤

0 X
⊤
(−i)X(−i)X

⊤
(−i)X(−i)β0

= σ2
ε Tr(X(−i)X

⊤
(−i)) + p−1τσ2

β Tr(X
⊤
(−i)X(−i)X

⊤
(−i)X(−i)) + oP(n

−1/2).

By the fact that λmin(A) Tr(B) ≤ Tr(AB) ≤ λmax(A) Tr(B) when A,B are positive semidef-

inite, we have c2Tr(Z(−i)Z
⊤
(−i)) ≤ Tr(X(−i)X

⊤
(−i)) ≤ C2Tr(Z(−i)Z

⊤
(−i)), which, along with

(np)−1Tr(Z(−i)Z
⊤
(−i))

P−→ (K − 1)/K and Eq. (D20), imply that

p−1τ Tr(X⊤
(−i)X(−i)X

⊤
(−i)X(−i)) ≤ p−1τ∥X⊤

(−i)X(−i)∥Tr(X⊤
(−i)X(−i)) ≲P τpn = oP(np).

Therefore, w.p.a.1, we obtain

c2σ
2
εpn

2K
≤ ∥X⊤

(−i)y(−i)∥2 ≤ 2C2σ
2
εpn. (E18)

Consequently, uniformly over λj ∈ S, we deduce:

∥Σ1/2
2 β̂i

λj
∥2 ≥ c22σ

2
εp

2nK

(
C2(1 +

√
cn)

2 + cnλj
)−2

. (E19)

On the other hand, we have

|β⊤
0 Σ2β̂

i
λj
| ≤ 1

n

∣∣∣∣∣β⊤
0 Σ2

(
1

n
X⊤

(−i)X(−i) + cnλjI
)−1

X⊤
(−i)X(−i)β0

∣∣∣∣∣
+

1

n

∣∣∣∣∣ε⊤(−i)X(−i)

(
1

n
X⊤

(−i)X(−i) + cnλjI
)−1

Σ2β0

∣∣∣∣∣ . (E20)

To bound the first term in (E20), by Lemma 5 and the fact that the sub-exponential norm

of b0,i is of order O(q
−1/2), we have, with probability exceeding 1− 2p10 exp(−c̃1 log2(p)),

sup
λj∈S

∣∣∣∣∣ 1nβ⊤
0 Σ2

(
1

n
X⊤

(−i)X(−i) + cnλjI
)−1

X⊤
(−i)X(−i)β0

− p−1τ

n
Tr

(
Σ2

(
1

n
X⊤

(−i)X(−i) + cnλjI
)−1

X⊤
(−i)X(−i)

)∣∣∣∣∣ ≤ q−1p−1τn1/2 log(p). (E21)

Moreover, note that Tr(AB) ≤ ∥AB∥ rank(AB) ≤ ∥A∥ ∥B∥ rank(B), we have
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1

n
Tr

(
Σ2

(
1

n
X⊤

(−i)X(−i) + cnλjI
)−1

X⊤
(−i)X(−i)

)

≤ ∥Σ2∥
∥∥∥∥∥
(
1

n
X⊤

(−i)X(−i) + cnλjI
)−1

1

n
X⊤

(−i)X(−i)

∥∥∥∥∥ rank(X⊤
(−i)X(−i)) ≤

nC2
2(1 +

√
cn)

2

C2(1 +
√
cn)2 + cnλj

,

where the last inequality uses the fact that λ1((A + I)−1A) = (λ1(A) + 1)−1λ1(A) and that

n−1∥X⊤
(−i)X(−i)∥ ≤ C2(1 +

√
cn)

2. Combining the above inequality with (E21), we have

1

n

∣∣∣∣∣β⊤
0 Σ2

(
1

n
X⊤

(−i)X(−i) + cnλjI
)−1

X⊤
(−i)X(−i)β0

∣∣∣∣∣ ≤ np−1τC2
2

(1 +
√
cn)

2

C2(1 +
√
cn)2 + cnλj

+ q−1p−1τn1/2 log(p), ∀λj ∈ S.

To bound the second term in (E20), we use Lemma 5. By definition, it equals∣∣∣∣∣p−1/2τ 1/2q−1/2

n
z⊤(−i)X(−i)

(
1

n
X⊤

(−i)X(−i) + cnλjI
)−1

Σ2(
√
qb0)

∣∣∣∣∣ .
Using the fact that λmin(n

−1X⊤
(−i)X(−i) + cnλjI) ≥ cnλj ≥ cnϵ and Eq. (D20), we have∥∥∥∥∥X(−i)

(
1

n
X⊤

(−i)X(−i) + cnλjI
)−1

Σ2

∥∥∥∥∥ ≤ C2c
−1
n ϵ−1∥X(−i)∥ ≲ np−1/2.

Furthermore, since ∥A∥F ≤
√

rank(A) ∥A∥, it follows that∥∥∥∥∥X(−i)

(
1

n
X⊤

(−i)X(−i) + cnλjI
)−1

Σ2

∥∥∥∥∥
2

F

≲ rank(X(−i))n
2p−1 ≲ n3p−1.

Therefore, by Lemma 5 and the fact that
√
qb0,i has bounded sub-exponential norm, it holds

that, for some constant c̃1,

P

(
1

n

∣∣∣∣∣ε⊤(−i)X(−i)

(
1

n
X⊤

(−i)X(−i) + cnλjI
)−1

Σ2β0

∣∣∣∣∣ > q−1/2n1/2τ 1/2p−1 log(p)

)
≤ 2 exp(−c̃1 log2(p)).

As a consequence, with probability at least 1− 2p10 exp(−c̃1 log2(p)), we have
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sup
λj∈S

1

n

∣∣∣∣∣ε⊤(−i)X(−i)

(
1

n
X⊤

(−i)X(−i) + cnλjI
)−1

Σ2β0

∣∣∣∣∣ ≤ q−1/2n1/2τ 1/2p−1 log(p). (E22)

Therefore, taking all bounds for components of (E20) altogether, we have, w.p.a.1,

|β⊤
0 Σ2β̂

i
λj
| ≤ np−1τC2

2

(1 +
√
cn)

2

C2(1 +
√
cn)2 + cnλj

+ p−1q−1τn1/2 log(p) + q−1/2n1/2τ 1/2p−1 log(p)

≤ 2np−1τC2
2

(1 +
√
cn)

2

C2(1 +
√
cn)2 + cnλj

, (E23)

for each λj ∈ S. In the second inequality, we use the fact that p−1q−1τn1/2 log(p) and

q−1/2n1/2τ 1/2p−1 log(p) are o(np−1τ 2) by the assumptions of Theorem 3. With (E19) and

(E23), we have

∥Σ1/2
2 (β̂i

λj
− β0)∥2 − ∥Σ1/2

2 β0∥2 = ∥Σ1/2
2 β̂i

λj
∥2 − 2β⊤

0 Σ2β̂
i
λj

≥c
2
2σ

2
εp

2nK

(
C2(1 +

√
cn)

2 + cnλj
)−2 − 4np−1τC2

2

(1 +
√
cn)

2

C2(1 +
√
cn)2 + cnλj

.

This inequality holds w.p.a. 1 as n, p → ∞ for each λj ∈ S. Given our initial choice for c̃,

it is easy to check that the right-hand side exceeds 50np−1τ 2, which implies Eq. (D24).

To prove Eq. (D25), note that

1

n
∥y(i) −X(i)β̂

i
τ−1λ∥2 −

1

n
∥ε(i)∥2 =

1

n
∥Z(i)Σ

1/2
2 (β̂i

τ−1λ − β0)∥2 +
2

n
ε⊤(i)Z(i)Σ

1/2
2 (β̂i

τ−1λ − β0).

By the facts Z(i) ⊥ β̂i
τ−1λ − β0 and n−1χ2(K−1n) = K−1 +Op(n

−1/2), we have

1

n
∥Z(i)Σ

1/2
2 (β̂i

τ−1λ − β0)∥2 d
=
1

n
χ2(K−1n)∥Σ1/2

2 (β̂i
τ−1λ − β0)∥2

=
1

K
∥Σ1/2

2 (β̂i
τ−1λ − β0)∥2 +OP

(
1√
n
∥Σ1/2

2 (β̂i
τ−1λ − β0)∥2

)
.

Additionally, by Theorem 2, we deduce:

∥Σ1/2
2 (β̂i

τ−1λ − β0)∥2 − ∥Σ1/2
2 β0∥2 =

2(K − 1)

K
np−1τ 2θ2σ

4
x

(
σ2
ε

2λ2
−
σ2
β

λ

)
+ oP(τ

2np−1).

Hence, using the fact that ∥Σ1/2
2 β0∥2 ≍ τ we derive the following equation:
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1

n

K∑
i=1

∥Z(i)Σ
1/2
2 (β̂i

τ−1λ−β0)∥2−∥Σ1/2
2 β0∥2 =

2(K − 1)

K
np−1τ 2θ2σ

4
x

(
σ2
ε

2λ2
−
σ2
β

λ

)
+oP(τ

2np−1).

Thus, to prove Eq. (D25), it remains to show that: 2
n
ε(i)Z(i)Σ

1/2
2 (β̂i

τ−1λ − β0) = oP(τ
2np−1).

Given that ε(i) ⊥ Z(i)Σ
1/2
2 (β̂i

τ−1λ − β0) and n
−3/2τ−3/2p→ 0 by Assumption 4, we have

2

n
ε(i)Z(i)Σ

1/2
2 (β̂i

τ−1λ − β0)
d
=

2

n
∥Σ1/2

2 (β̂i
τ−1λ − β0)∥ε⊤(i)x = OP(n

−1/2τ 1/2) = oP(τ
2np−1),

where x is a standard Gaussian vector independent of ε(i). This concludes the proof.

Lemma 19. There exists a constant C̃1 such that, w.p.a.1, uniformly for µ1, µ2 ∈ [0, c̃−1],

pn−1τ−2|R̃K−CV (µ1)− R̃K−CV (µ2)| ≤ C̃1|µ1 − µ2|+ oP
(
pn−1τ−2

)
.

Proof. By the Woodbury identity, we deduce that(
1

n
X⊤

(−i)X(−i) + cnτ
−1µ−1I

)−1

− c−1
n τµI = −c

−2
n τ 2µ2

n
X⊤

(−i)

(
I+

c−1
n τµ

n
X(−i)X

⊤
(−i)

)−1

X(−i).

Hence, we arrive at:

sup
1≤i≤K

µ∈[0,c̃−1]

cnτ
−3 log−1(p)

∥∥∥∥∥
(
1

n
X⊤

(−i)X(−i) + cnτ
−1µ−1I

)−1

− c−1
n τµI+

c−2
n τ 2µ2

n
X⊤

(−i)X(−i)

∥∥∥∥∥
= sup

1≤i≤K

µ∈[0,c̃−1]

c−1
n µ2τ−1 log−1(p)

∥∥∥∥∥ 1nX⊤
(−i)

[(
I+

c−1
n τµ

n
X(−i)X

⊤
(−i)

)−1

− I

]
X(−i)

∥∥∥∥∥
≤ sup

1≤i≤K

µ∈[0,c̃−1]

µ3c−2
n log−1(p)

∥∥∥∥ 1nX⊤
(−i)X(−i)

∥∥∥∥2 P−→ 0. (E24)

The last inequality is a consequence of Eq. (D20) and the fact that∥∥∥∥∥
(
I+

c−1
n τµ

n
X(−i)X

⊤
(−i)

)−1

− I

∥∥∥∥∥ ≤
∥∥∥∥∥
(
I+

c−1
n τµ

n
X(−i)X

⊤
(−i)

)−1
∥∥∥∥∥ · c−1

n τµ

∥∥∥∥ 1nX⊤
(−i)X(−i)

∥∥∥∥
≤ c−1

n τµ

∥∥∥∥ 1nX⊤
(−i)X(−i)

∥∥∥∥ .
On the other hand, by direct calculation we have that R̃K−CV (µ1)− R̃K−CV (µ2) equals:
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K∑
i=1

(
1

n
∥X(i)β̂

i
τ−1µ−1

1
∥2 − 1

n
∥X(i)β̂

i
τ−1µ−1

2
∥2
)
− 2

n
y⊤(i)X(i)(β̂

i
τ−1µ−1

1
− β̂i

τ−1µ−1
2
)

=:
K∑
i=1

W1i(µ1, µ2)−W2i(µ1, µ2).

We next investigate W1i(µ1, µ2) and W2i(µ1, µ2) separately. For W1i(µ1, µ2), we have

W1i(µ1, µ2) =
1

n
(β̂i

τ−1µ−1
1

− β̂i
τ−1µ−1

2
)⊤X⊤

(i)X(i)β̂
i
τ−1µ−1

1
+

1

n
β̂i
τ−1µ−1

2
X⊤

(i)X(i)(β̂
i
τ−1µ−1

1
− β̂i

τ−1µ−1
2
)

≤ 1

n

∥∥∥X(i)(β̂
i
τ−1µ−1

1
− β̂i

τ−1µ−1
2
)
∥∥∥ · ∥X(i)β̂

i
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1
∥+ 1

n
∥X(i)β̂

i
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2
∥ ·
∥∥∥X(i)(β̂

i
τ−1µ−1

1
− β̂i

τ−1µ−1
2
)
∥∥∥ .

Define β̃i
τ−1µ−1

1

= 1
n

[
c−1
n τµ1I− c−2

n τ2µ2
1

n
X⊤

(−i)X(−i)

]
X⊤

(−i)y(−i). Observe that

sup
µ1∈[0,c̃−1]

1√
n

∥∥∥X(i)β̂
i
τ−1µ−1

1
−X(i)β̃

i
τ−1µ−1

1

∥∥∥
≤ sup
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1
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∥∥X(i)

∥∥∥∥∥∥∥
(
1

n
X⊤

(−i)X(−i) + cnτ
−1µ−1

1

)−1

− c−1
n τµ1I+

c−2
n τ 2µ2

1

n
X⊤

(−i)X(−i)

∥∥∥∥∥
×
∥∥X⊤

(−i)y(−i)

∥∥ = OP(τ
3 log(p)) = oP(c

−1/2
n τ), (E25)

where we use Eq. (E24), Eq. (D20), and Eq. (E18). Additionally, it is easy to verify that

sup
µ1∈[0,c̃−1]

1√
n

∥∥∥∥ 1nX(i)β̃
i
τ−1µ−1

1

∥∥∥∥ = sup
µ1∈[0,c̃−1]

1√
n

∥∥∥∥ 1nX(i)

[
c−1
n τµ1I−

c−2
n τ 2µ2

1

n
X⊤

(−i)X(−i)

]
X⊤

(−i)y(−i)

∥∥∥∥
≤ c−1

n τ c̃−1

n
√
n

∥∥X(i)X
⊤
(−i)y(−i)

∥∥+ c−2
n τ 2c̃−2

n2
√
n

∥∥X(i)X
⊤
(−i)X(−i)X

⊤
(−i)y(−i)

∥∥ .
For the first term, by Eq. (E18), we have

c−1
n τ c̃−1

n
√
n

∥∥X(i)X
⊤
(−i)y(−i)

∥∥ =
c−1
n τ c̃−1

n
√
n

∥∥∥Z(i)Σ
1/2
2 X⊤

(−i)y(−i)

∥∥∥
d
=
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n τ c̃−1

n
√
n

√
χ2(n/K)

∥∥∥Σ1/2
2 X⊤

(−i)y(−i)

∥∥∥ ≤ C̃1

2
c−1/2
n τ,

w.p.a.1 for some constant C̃1 that only depends on fixed constants. The second term can be

bounded in the same way. Therefore, we have
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sup
µ1∈[0,c̃−1]

1√
n
∥X(i)β̂

i
τ−1µ−1

1
∥ ≤ C̃1c

−1/2
n τ + oP(c

−1/2
n τ). (E26)

Analogously, we can prove that 1√
n
∥X(i)(β̂

i
τ−1µ−1

1

− β̂i
τ−1µ−1

2

)∥ ≤ C̃1|µ1−µ2|c−1/2
n τ+oP(c

−1/2
n τ)

holds uniformly for µ1, µ2 ∈ [0, c̃−1], where C̃1 is a fixed constant that may vary from line to

line. In light of this, we deduce that: sup1≤i≤K W1i(µ1, µ2) ≤ C̃2
1c

−1
n τ 2|µ1 − µ2| + oP(c

−1
n τ 2)

holds w.p.a.1 uniformly for µ1, µ2 ∈ [0, c̃−1].

To bound W2i(µ1, µ2), we first define W̃2i(µ1, µ2) =
2
n
y⊤(i)X(i)(β̃

i
τ−1µ−1

1

− β̃i
τ−1µ−1

2

). By Eq.

(E25), it holds that

sup
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2
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1
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2
)∥ = OP(τ

3 log(p)) = oP(c
−1
n τ 2).

Moreover, employing a similar argument to that used in proving Eq. (E26), we have

sup
µ1,µ2∈[0,c̃−1]

|W̃2i(µ1, µ2)|

= sup
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∣∣∣∣ 2ny⊤(i)X(i)
1

n

[
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2)
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X⊤

(−i)X(−i)

]
X⊤

(−i)y(−i)

∣∣∣∣
≲ |µ1 − µ2|
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n2

∣∣y⊤(i)X(i)X
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n3

∣∣y⊤(i)X(i)X
⊤
(−i)X(−i)X

⊤
(−i)y(−i)

∣∣ .
For the first term, by Lemmas 2 and 3, it is easy to verify that

c−1
n τ

n2

∣∣y⊤(i)X(i)X
⊤
(−i)y(−i)

∣∣ ≤ c−1
n τ

n2

∣∣ε⊤(i)X(i)X
⊤
(−i)ε(−i)

∣∣+ c−1
n τ

n2

∣∣ε⊤(i)X(i)X
⊤
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∣∣
+
c−1
n τ

n2

∣∣β⊤
0 X

⊤
(i)X(i)X

⊤
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∣∣+ c−1
n τ

n2

∣∣β⊤
0 X

⊤
(i)X(i)X

⊤
(−i)X(−i)β0

∣∣ ≤ C̃1c
−1
n τ 2,

for some constant C̃1 w.p.a.1. The second term can be shown analogously. As a result, we

have sup1≤i≤K W2i(µ1, µ2) ≤ C̃1c
−1
n τ 2|µ1 − µ2| + oP(c

−1
n τ 2) w.p.a.1, uniformly for µ1, µ2 ∈

[0, c̃−1]. Combining the bounds for W1i(µ1, µ2) and W2i(µ1, µ2) concludes the proof.

Lemma 20. Let ŵ denote an optimal solution of Eq. (D29). Regarding ϕ(g, h) and ϕS̃c
n
(g, h),

as introduced and discussed in relation to Eq. (D30), suppose there are constants ϕ̄ and

ϕ̄S̃c
n
with ϕ̄ < ϕ̄S̃c

n
, such that for all η > 0, the following hold w.a.p.1 as n → ∞: (a)

ϕ(g, h) < ϕ̄+ η, (b) ϕS̃c
n
(g, h) > ϕ̄S̃c

n
− η. Under these conditions, we have ŵ ∈ S̃n w.p.a.1.
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Proof. The proof closely resembles that of Lemma 15 and is thus omitted.

Lemma 21. There exists some sufficiently small ϵ > 0, such that for any η > 0, w.p.a.1,

the inequalities in (D33) hold.

Proof. By Eq. (E14) in Lemma 17, we have the following result:

− cnδ
2

4
µn(α, δ) +

cn
n

(
τ 1/2αg − τ−1Σ

−1/2
1 ε

)⊤ (
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2
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2(σxσβ, δ
∗
1, δ2) + 2σxσβα2 +

cnτ
−2

n
∥ε∥2 + oP(1).

Additionally, by Lemmas 2-3 and p1/2τ−1n−1q−1/2 = o(1) by Assumption 4, we deduce that

−cnγ
2

+
cnγτ

−3

2α2
β0Σ2β0 +

cnτ
−1δ√
n

h⊤Σ
1/2
2 β0

P−→ −γ1α2

σxσβ
.

In the sequel, we examine the asymptotic behavior of the remaining term in Q̃n(α2, δ3, γ1):

min
∥v∥∞≤1

{
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2
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By using ∥Σ−1
2 ∥ ≤ c−1

2 , we see (E27) is upper bounded by
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2
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Similarly, with λminΣ

−1
2 ≥ C−1

2 , (E27) is lower bounded by
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Together with Lemma 22, we deduce that, w.p.a.1, (E27) lies in

[
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2
β
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2
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]
.

Recall that Q̃n(α2, δ3, γ1) is defined in (D32). We introduce Q̃upper
n (α2, δ3, γ1), defined as:
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and Q̃lower
n (α2, δ3, γ1), defined as:
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Consequently, Q̃lower
n ≤ Q̃n ≤ Q̃upper

n . Note also that Q̃lower
n (α2, δ2, γ1) and Q̃upper

n (α2, δ3, γ1)

maintain their convexity in α2 and joint concavity in (δ3, γ1). By employing a similar line

of reasoning as presented in Lemma 17, alongside the definitions of cα and Cα, it becomes

evident that there exists a sufficiently small ϵ > 0 such that

min
α2∈[ cα

4σβ
,Cα
σβ

]
max
γ1>0

δ3∈Kδ3

Q̃upper
n

P−→ min
α2∈[ cα

4σβ
,Cα
σβ

]
max
γ1>0

δ3∈Kδ3

−δ
2
3θ1
4θ3

+ 2σxσβα2 −
γ1α2

σxσβ
−

σ2
xσ

2
β

4γ1C2

Cλ = − Cλ

8C2

,

and min
α2∈[ cα

4σβ
, cα
2σβ

+ϵ]∪[ Cα
2σβ

−ϵ,Cα
σβ

]
max
γ1>0

δ3∈Kδ3

Q̃lower
n

P−→ − Cλ

100C2

.

These results immediately yield the desired inequalities.

Lemma 22. For any α2, δ3 ∈ R and γ1 > 0, w.p.a.1, we have

Cλ

2
≤ cnτ

−1

∥∥∥∥(∣∣∣n−1/2τ 1/2Σ
1/2
2 δh+

γ

α2
τ−3/2Σ2β0

∣∣∣− n−1/2τ−1/2λn

)
+

∥∥∥∥2 ≤ 2Cλ. (E28)

Proof. We first establish the following:

cnn
−1τ−2

{∥∥∥∥(∣∣∣Σ1/2
2 δ∗1h

∣∣∣− λn

)
+

∥∥∥∥2 − E
∥∥∥∥(∣∣∣Σ1/2

2 δ∗1h
∣∣∣− λn

)
+

∥∥∥∥2
}

P−→ 0. (E29)

Let h̃ := Σ
1/2
2 h; we then have h̃ ∼ N (0,Σ2). Let us denote the (i, j)-th element of Σ2 as

Σ2,ij, thus we have

h̃j|h̃i d
= Σ2,ijΣ

−1
2,iih̃i +

√
Σ2,jj − Σ−1

2,iiΣ
2
2,ijg1,

where g1 is a standard Gaussian random variable independent of h̃i. Consequently,

Cov
(
(|δ∗1h̃i| − λn)

2
+, (|δ∗1h̃j| − λn)

2
+

)
=E

{
(|δ∗1h̃i| − λn)

2
+E
[
(|δ∗1h̃j| − λn)

2
+ − E(|δ∗1h̃j| − λn)

2
+|h̃i

]}
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≡E

{
(|δ∗1h̃i| − λn)

2
+E

[(∣∣∣∣δ∗1 (Σ2,ijΣ
−1
2,iih̃i +

√
Σ2,jj − Σ−1

2,iiΣ
2
2,ijg1

)∣∣∣∣− λn

)2

+

−
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2,iiΣ
2
2,ijg1

)∣∣∣∣− λn

)2

+

∣∣∣∣∣h̃i
]}

,

where g2 ∼ N (0,Σ2,ii) is independent of both g1 and h̃i. It is straightforward to confirm

that the following inequality holds true:∣∣∣∣∣
(∣∣∣∣δ∗1 (Σ2,ijΣ

−1
2,iih̃i +

√
Σ2,jj − Σ−1

2,iiΣ
2
2,ijg1

)∣∣∣∣− λn
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−
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2,iiΣ
2
2,ijg1
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)
+

+

(∣∣∣∣δ∗1 (Σ2,ijΣ
−1
2,iig2 +

√
Σ2,jj − Σ−1

2,iiΣ
2
2,ijg1

)∣∣∣∣− λn

)
+

∣∣∣∣ .
Applying the Cauchy-Schwarz inequality to the above inequality yields

E

[ ∣∣∣∣∣
(∣∣∣∣δ∗1 (Σ2,ijΣ

−1
2,iih̃i +

√
Σ2,jj − Σ−1
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2
2,ijg1
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+

−
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)2

+

∣∣∣∣∣
∣∣∣∣∣h̃i
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2,ii(h̃i − g2)|2
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Σ2

2,ijΣ
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(
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)
,

where the last step is due to c2 ≤ Σ2,ii ≤ C2. Therefore, by Lemma 11, we have

Cov
(
(|δ∗1h̃i| − λn)

2
+, (|δ∗1h̃j| − λn)

2
+

)
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≲|Σ2,ij|(λn + 1)
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2
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2,ij(λ
2
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2
+.

Further, by Lemma 10 and Eq. (9), we have λn = o(log(p)). The above inequality leads to:
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= O
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−1τ−2 log2(p)
)
= on(1),

where we use
∑p

j=1Σ
2
2,ij ≤ C2

2 and Cauchy–Schwartz inequality in the second step. This

leads to Eq. (E29). Using the same approach, we can prove∥∥∥∥(∣∣∣Σ1/2
2 δ∗1h

∣∣∣− λn + log−1(p)
)
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Now we are ready to establish Eq. (E28). Note that w.p.a.1, we have
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1/2
2 δh+
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where the last inequality is given by Lemma 12 and the facts that τ log4(p) = o(1) and

n1/2τ 1/2p−1/2q−1/2 log2(p) = o(1) by Assumption 4. Therefore, w.p.a.1, we have
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Similarly, it holds that w.p.a.1,
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Finally, by Lemma 10 and the fact that λn = o(log(p)), it is easy to verify that

E
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Together with the definition that Cλ = limn→∞ pn−2τ−2E
∥∥∥∥(∣∣∣Σ1/2

2 δ∗1h
∣∣∣− λn

)
+

∥∥∥∥2 given by

Eq. (9), we conclude the proof.

Lemma 23. Let Σ1 and Σε denote the covariance matrices of stationary processes with

exponentially decaying correlations. As a result, both ∥Σ1∥ and ∥Σε∥ are bounded and the

conditions in Assumption 5 pertaining to these matrices are satisfied.

Proof. Given the symmetric Toeplitz structure of the matrices Σ1 and Σε, the elements of

these matrices can be defined as (Σ1)ij = σ1,|i−j| and (Σε)ij = σε,|i−j|, respectively. By as-

sumption, the sequences {σ1,k}∞k=1 and {σε,k}∞k=1 decay exponentially, i.e., there exist positive

constants c and C such that |σ1,k|, |σε,k| ≤ C exp(−ck), for all k.
We first show that the eigenvalues of Σ1 are bounded. The proof for Σε is similar. Note

that

max
i=1,...,n

n∑
j=1

|(Σ1)ij| = max
i=1,...,n

n∑
j=1

|σ1,|i−j|| ≤ 2
n−1∑
k=0

|σ1,k|.

Since {σ1,k}∞k=1 decays exponentially, the right-hand-side is bounded, as n→ ∞. The bound

on ∥Σ1∥ thus follows from Gershgorin circle theorem.
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Next we establish 1
n
Tr(ΣεΣ1) = σ2

εθ1 + o(c−1
n τ). The proofs for θ3 and θ4 follow anal-

ogously. The series σ1,0σε,0 + 2
∑∞

i=1 σ1,iσε,i is convergent, since the series {σ1,k}∞k=1 and

{σε,k}∞k=1 decay exponentially. We denote the limit as σ2
εθ1. Moreover, given that
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]
,

and that {σ1,k}∞k=1 and {σε,k}∞k=1 decay exponentially, it follows that −∑n−1
i=1 2iσ1,iσε,i −

2n
∑∞

i=n σ1,iσε,i <∞, as n→ ∞. We thereby have that

1

n
Tr(ΣεΣ1) = σ2

εθ1 +O
(
n−1
)
= σ2

εθ1 + o(c−1
n τ).
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