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Abstract

We fully characterize the possible outcomes of exploration and stopping: all state-
time distributions corresponding to stopping some martingale process with bounded
variation. Utilizing this characterization, we provide a general methodology for solv-
ing an optimal exploration-stopping problem where the stopping utility depends on
state and time arbitrarily. We reveal the close relation between the pattern of explo-
ration and time preference and apply it to study competitive exploration contests.

1 Introduction

Many economic problems involve exploration as well as a stopping decision. The
payoff of the decision-maker can depend on the time of the decision, as well as the state of
knowledge at that time. Extensive literature on real options emphasizes the importance of
the stopping problem. For example, the classic book of Dixit and Pindick (1994) focuses
on the timing of investment decisions under the assumption of exogenous information
arrival. Yet, many applications involve active exploration, which often includes the choice
of the type of information to acquire.

Dynamic exploration problems are complicated because the decision of what type
of information to acquire can depend on the information already obtained. This paper
sets off with a result which significantly simplifies these problems. Specifically, for a
class of natural constraints on the rate of learning, we present a simple condition that
fully characterizes the attainable joint distributions over stopping times and the state of
knowledge at the stopping time. Thus, when payoffs depend on the stopping time as well
as the information available at that time, instead of solving the dynamic problem, we can
simply pick the optimal distribution. Our result guarantees the existence of a dynamic
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strategy that attains the desired distribution, as well as that no other strategy can attain
a distribution outside the consideration set.

To appreciate the power of the result, consider two competitive firms that test candi-
date technologies in order to launch a new product. They could perform various exper-
iments that glean different types of information. Some experiments may focus on relia-
bility, yielding information in the form of observed potential failures. Some experiments
may yield better estimates of the efficiency of the technology in the form of performance
data in various circumstances. The information collected affects the success of the prod-
uct, and so does the timing. Specifically, because the distribution of times that the com-
petitor launches the product matters, the problem may be more complicated than one of
exponential discounting. Each firm wants to know the attainable information given any
distribution of decision times, and our result provides exactly that.

Outline of contribution. In our general model of exploration and stopping, we model
the exploration strategy of a decision-maker (DM) as choosing a martingale process. Ex-
ploration is flexible in that any martingale process is feasible as long as it satisfies a bound
on the rate of variation accumulation.

Our first main result gives a complete characterization of the joint distributions of
state and time that are embeddable, i.e., they are the joint distributions of the stopping
state and stopping time corresponding to some feasible martingale process and stopping
time (Theorem 1). We show that a state-time distribution is embeddable if and only if,
in each period, a simple inequality condition holds: the expected variation of the stopped
state plus the variation of the expected future stopped state is less than the cumulative vari-
ation bound up to the period. The condition has a natural interpretation that the amount
of knowledge that has been exploited plus the amount of knowledge that is explored but
not yet exploited must be less than the total capacity.

Then, we consider a general optimal exploration-stopping problem, where the DM
controls the exploration strategy and stopping time. The DM’s stopping payoff depends
arbitrarily on the state of the martingale and time. The embedding theory reduces the
general exploration-stopping problem to a semi-static problem where the DM directly
chooses the optimal embeddable state-time distribution—a simple linear program.

Our second main result provides a unified methodology for solving the reduced prob-
lem. We establish a strong duality of the linear program and derive a necessary and
sufficient first-order characterization of the optimal policy (Theorem 2). The constrained
optimization problem is equivalent to an unconstrained dual problem where there exists
a set of time-dependent “prices” (multipliers) at which the DM can buy or sell informa-
tion. The first-order condition states that the optimal state-time distribution “concavi-
fies” (attains the upper tangent hyperplane of) a combination of the payoff function and
the shadow cost/benefit of exploration. Then, solving the optimal exploration-stopping



problem boils down to solving a single-dimensional ordinary differential equation char-
acterizing the “prices”. In various applications, we illustrate the tremendous analytical
tractability of the methodology.

Third, we derive several general predictions of the optimal exploration-stopping prob-
lem. We show that a strategy with coarse support can always solve it: the support of the
stopped state at each time contains a bounded number of points. When the payoff func-
tion is convex in time, we show that the optimal exploration process resembles a Poisson
process that either drifts along a deterministic path or jumps into the stopping region.
Conversely, when the payoff function is concave in time, the optimal exploration process
necessarily involves “pure exploration” at the beginning, i.e., exploration without any
immediate stopping.

Economic applications. We apply our methodology to develop tractable models for
economic applications. Our first application revisits the canonical real options prob-
lem but with active and flexible exploration. We use the application to explain the key
machinery of our model, establishing a connection with the recursive approach that has
been almost exclusively used in the literature.

Our second application is a canonical information acquisition problem: a DM chooses
a signal process with bounded informativeness to learn a binary payoff-relevant state and
solves a decision-making problem upon stopping. We characterize the optimal informa-
tion acquisition strategy for general discount functions.

The first result reveals the connection between the risk preference toward time lot-
teries and the optimal pattern of exploration. Specifically, we show that the optimal
exploration policy alternates between two types of strategies:

* Pure exploration: during a period of pure exploration, the DM’s interim belief be-
comes more dispersed but never sufficient to induce stopping and making the de-
cision. A pure exploration period always ends in a region where the (adjusted)
discount function is concave (indicating time-risk averse).

* Full exploitation: during a period of full exploitation, the DM’s belief jumps accord-
ing to a Poisson process, and the DM stops immediately upon the jump of the belief.
The continuing belief remains degenerate and constant. An exploitation period typ-
ically ends in a region where the (adjusted) discount function is convex (indicating
time-risk loving).

The second result reveals the connection between the discount rate’s evolution and the
decision’s quality. We consider a setting where pure exploitation is optimal and quantify
the decision quality. Convexly decreasing (concavely increasing) decision quality over
time implies decreasing (increasing) discount rate. The decision quality is constant if and
only if the discount function resembles the standard exponential discounting.
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Our third application is a continuous-time contest in which n contestants indepen-
dently and privately choose their exploration strategies, i.e., each of them chooses a mar-
tingale process and a stopping time. The distance between the stopped state and the
initial state represents the quality of the research. They compete in the time dimension
but also value the quality dimension: the contestant who stops the first collects a reward
that depends on the quality of his research. The remaining contestant gets nothing. We
provide a complete characterization of all pure strategy equilibria of the contest. We
show that all equilibria are symmetric and exhibit endogenous time-risk loving induced
by competition: in any pure strategy equilibrium of the game, all contestants use the
same Poisson exploration process, leading to convex effective discount factors.

Related literature. The optional stopping problem in our paper resembles the sequen-
tial sampling problem (see Wald (1947) and Arrow et al. (1949)) and the real options
problem (see Dixit & Pindyck (1994)). We merged the stopping problem with flexible
active exploration, providing by bar the most general solution to optimal exploration and
stopping with completely general preference. Our framework fully nests Zhong (2022),
Chen & Zhong (2024), and the majority of Hébert & Woodford (2023), each of which
focuses on a specific time preference and payoff structure and predicts sharply different
results.! The generality of our method allows us to obtain a complete characterization of
how time preference determines the optimal pattern of exploration, unifying all existing
results. A closely related but not nested paper is Georgiadis-Harris (2021), where the
stopping time is exogenous and the pure accumulation policy is optimal.

Our key technical innovation is a novel embedding theory: the characterization of
all state-time distributions that can be implemented by stopping some martingale with
bounded variation. It could be viewed as extending the celebrated Skorokhod’s embed-
ding (Skorokhod (1982)) to general martingale and the state-time product space. An ex-
tensive literature on stochastic analysis attempted to generalize Skorokhod’s embedding
to general stochastic processes (see Obl6j (2004) for a survey). Our approach differs from
all these papers by embedding not only the distribution of states but the state-time joint
distribution.

We show that strictly convex time preferences always lead to a Poisson exploration
strategy where the state drifts deterministically or jumps to the stopping region, justify-
ing the Poisson learning models adopted by papers on sequential sampling (see Che &
Mierendorff (2019), Mayskaya (2022) and Nikandrova & Pancs (2018)). Strictly concave
time preferences always lead to pure exploration without stopping. The “pure accumula-
tion” policy with deterministic stopping in Chen & Zhong (2024) is a special case under

1 Zhong (2022) studies the case with exponential discounting. Hébert & Woodford (2023) studies both
exponential discounting and fixed waiting cost. Chen & Zhong (2024) studies a one-dimensional setting
with a fixed stopping threshold and general convex / concave time preference.



additively separable preference. Pure exploration is a common model for studying the
timing of innovation (see Dasgupta & Stiglitz (1980), Lee & Wilde (1980) and Reinganum
(1989)). The result connects optimal exploration to a recent literature on the risk prefer-
ence towards time lotteries (See Chesson & Viscusi (2003), Chen (2013), Onay & Onciiler
(2007) and DeJarnette et al. (2020)).

Our second application studies speed-accuracy tradeoff in dynamic exploration, which
has been studied extensively using the drift-diffusion models (DDM) of binary choice
problems (see Ratcliff & Rouder (1998); Fudenberg et al. (2018, 2020)). Our exploration-
stopping model provides an optimization foundation for speed-accuracy complementar-
ity and substitutability under accelerating and decelerating discounting, respectively.

Our third application is closely related to the literature on dynamic contests. Seel
& Strack (2013) and Seel & Strack (2016) introduced the dynamic contest framework
where contestants compete in the states of stopped Brownian motions. Several papers
have extended this framework to allow for more general processes, prize structure, and
preferences (see Nutz & Zhang (2022); Feng & Hobson (2015, 2016a,b)). Park & Smith
(2008); Anderson et al. (2017) study the timing game where contestants compete in the
stopping time. Our exploration contest merges the two approaches and provides a frame-
work where the contest’s prize depends on both the stopping state and the stopping time.

The rest of the paper is organized as follows. Section 2 addresses the question of
attainable state-time distributions. Section 3 demonstrates the power of this result by
solving the optimal exploration-stopping problem. Section 4 presents several applica-
tions.

2 Exploration & stoppinig : the embedding theory

In this section, we study the feasible outcomes in a problem of dynamic exploration.
Time can be continuous or discrete. Closed subset T of R, captures our timeline. We
assume that 0 € T and that T contains at least two elements.

The state y;, t € T, is a martingale with domain in a convex compact set S C RR".
For example, the state could be the belief of the DM about one of n states of the world,
in which case S is the probability simplex in IR”. Starting from point yy C R", the DM
chooses the exploration strategy that determines the evolution of y;.

There is a rich set of exploration strategies, which lead to different laws of motion
of the state y;. Any strategy is admissible as long as it satisfies the following restriction.
Specifically, assume that there exists a strongly convex and continuous function H : § —
R and constant x > 0, such that cadlag martingale (y;);c7 in S is admissible if and only if



satisfies the variation constraint

E[H(uy) - H(w) | R < x(¢' — 1) (1)

for all ¢/,t € T, t’ > t. Condition (1) is a common constraint in information economics
(See Zhong (2022), Hébert & Woodford (2023) and Georgiadis-Harris (2021)). It captures
the idea that there are many choices of how to explore - e.g., via Poisson or Brownian
signals or a combination thereof - but there is a constraint on how quickly one can learn.
Function H provides an appropriate measure of information received and y, the rate of
information arrival. The assumption nests familiar constraints like quadratic variation
bound (when H is quadratic) and mutual information rate bound (when H is Shannon’s
entropy).?

Formally, denote by (QQ, 7, P) the underlying probability space.> The decision of when
to stop exploration is captured by the stopping time 7 w.r.t. the filtration (% );cr. Let M
denote the collection of all admissible pairs of ({y;), 7).

We are interested in joint probability measures over pairs (y, T) attainable by some
admissible state processes y; with some stopping time 7., i.e. the set

F = {f e A(SxT)| () 1) e Msit. f ~ (]AT,T)}.

IF is called the set of embeddable state-time distributions. We are now ready to present
our first result: the characterization of embeddable distributions. In order to provide a
clean expression for the necessary and sufficient condition, we normalize S to be a subset
of the probability simplex of R"*! and extend H homogeneously (of degree 1) from S to
the convex cone {a-pu|a € R,,peS}.4

Theorem 1 (Martingal Embeddings). f €F < [Ef[u]=poand Vt €T, f satisfies:

i tH(ﬂ)f(d%dTHH(J tﬂf(dﬂ;df))—H(ﬂo)SXJmin{t,T}f(dﬂ,dT) 2)

Proof. See Appendix A. Q.E.D.

Let us interpret condition (2). The DM explores and then stops. The left-hand side
captures minimal information required to generate the portion of the distribution f over

2The variation constraint makes the dispersion-stopping time tradeoff nontrivial. Without the con-
straint, any marginal distribution on A(S) can be embedded with zero stopping time.

3Because exploration involves the choice of the type of information to receive, exploration strategy
defines the probability space together with the process y; on it.

4 The first assumption is a normalization through shifting and scaling the space. The second assumption
on H outside of S is immaterial. The two normalization assumptions are innocuous and help simplify the
notations.



time interval [0, t]. The right-hand side captures the total information received over [0, ],
until stopping.
To see this in greater detail, define

—~ _ | M ift<t,
P Bl o>t ifest

Then process u; contains weakly less information than process y;, because it does not
refine the knowledge that y; contains in the event that 7 > t. Information contained in
#; cannot exceed total information obtained until time ¢, hence we have the following
necessary condition

E[H(@)] - H(o) < xE[min(t, 1)}

This inequality is equivalent to (2).

Theorem 1 states that condition (2) is not only necessary but sufficient, i.e., there exists
a pair (p4, T) that gives rise to distribution f. If equality in (2) held at all times, then 7;
would not only achieves distribution f, but also satisfy condition (1). If not, the proof
of Theorem 1 constructs process y; that embeds maximal obtainable information at each
time point ¢ in such a way that we can target the desired joint distribution f at all times
after t.

While the formal proof of sufficiency is relegated to the appendix, here we provide a
sketch of the proof and a graphical illustration when the desired distribution f (which
satisfies Equation (2)) is supported on finitely many points. Figure 1a depicts the support
of one such distribution with 6 discrete periods. ({y;), 7) is constructed backward in time.

» Step 1. Take the mass that stops in the last period f(-,6) (the red dots in Figure 1b).
First, let’s find a continuous-time martingale that, when stopped at t = 6, has the
same distribution as f(-,6) and satisfies Equation (1). One such martingale can be
constructed using the two paths (the dashed curves) along which H(y;) is increasing
at rate y. Then, the process is a compensated Poisson process that either drifts
along the current path or jumps to the other path (illustrated by the dotted arrows).
Construct the process backward in time until + = 5. The two blue dots represent the
distribution of p; at t = 5. Note that by construction, Equation (1) is satisfied for
tel5,6].

» Step 2. The two blue dots constitute a mean-preserving contraction of the two red
dots. Now, consider the new joint distribution that replaces the red dots in f with
the blue dots in Figure 1b. We claim that the new distribution still satisfies Equa-
tion (2). The reason is that when moving from t = 6 to t = 5, the reduction of accrued
capacity (RHS of Equation (2)) is x - f(S,6). Meanwhile, the total variation (LHS of
Equation (2)) also reduces by x - f(S, 6) since our constructed process uses exactly x
unit of variation per unit of time.



» Step 3. Then, we can recursively treat t = 5 as the last period and construct a mar-
tingale that satisfies Equation (1) for ¢ € [4,5] and distributed according to the red
dots when t = 5. See Figure 1c.

» Step 4. We repeat steps 2 & 3 until t = 0, depicted by Figure 1d. During the pro-
cesses, there are two possible variants, which have been highlighted in blue and
black. The first variant is period [2,3], during which the constructed blue process
becomes degenerate before t = 2. In this case, we just keep it constant until ¢ = 2.
Evidently, this means the reduction of total variation (LHS of Equation (2)) is strictly
less than x - f(S,[3,6]). Therefore, at t = 2, Equation (2) holds with an even larger
gap for the new distribution.

The second variant is period [0, 1]. Equation (2) at t = 1 implies that the variation of
the distribution is less than x. Therefore, the process constructed backward must
become degenerate before t = 0, which guarantees that the entire process starts at
Mo as required by M.
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Figure 1: Graphical illustration of Theorem 1

2.1 Extensions of the embedding theory

The main embedding theory relies on several key features of the admissible pro-
cesses: the martingale property, the inequality constraint, and the time-invariant capacity
bound. In various economic applications, one or more of those features may be violated.



In this section, we show that all these features can be relaxed via immediate corollaries
of Theorem 1.

Equality constraint. If the admissible processes are defined by equality variation con-

straints: IE[dhé(t” 2 |]-"t] = x, then the embeddable state-time distributions are characterized

by Equation (2) with one extra constraint:

H(p)f (dp, dt) — H(jug) = xj Cf(dppd). 3)

SxT SxT

The single equation Equation (3) is sufficient to guarantee that all variation constraints
are binding because it is effectively the aggregation of all the interim variation constraints.

Time-dependent variation bound. Let a bounded and strictly positive function x; be
the time-dependent variation bound. We say cadlag martingale (y;) is xy-admissible if
and only if it satisfies

E[H(py) - H(w)| 7] < f Xsds (4)

forall t/,t € T and t’ > t. Then, by transformation of the timeline via t — ¢(t) = Xsds,

s<t

Equation (4) is equivalent to E[H (uy) — H(p)] < @(t') — ¢(t), i.e. {py) is admissible with
variation bound 1. Applying Theorem 1 to the transformed space immediately implies:

Corollary 1.1. f € A(S x T) is attainable by x-admissible process {y;) and stopping time T if
and only if B¢[p] = po and Vt € T,

f H(u)f(du,de(j uf(dy;dr))—H(uwsf xo(1— F(£))ds (5)
<t ™>t s<t

Martingales with drift. Consider processes (w;) that can be represented as a martingale
process plus deterministic drift m: w; = p; + m; and satisty Equation (1). Suppose H is a
quadratic function, i.e., H(w) = w' - M - w for some positive definite matrix M. Then,
E[H(wy) - Hw)| 7] =B[w] -M-wy - w] -M-w,|7]
=E[pf - M-y — pf - M- ]+ 2E[pf -l |R]- M -m,
=E [H(P‘t') - H(ﬂt)|]:t]~

That is, (w;) satisfies Equation (1) if and only if (y;) also satisfies it. Applying Theorem 1
to the transformed space (w,t) = (p(w) = w — my, t) immediately implies



Corollary 1.2. Suppose H is a quadratic function. f € A({S +my, t};er) is attainable by admis-
sible process (w;) and stopping time T if and only if E¢[w —m ] =wg and ¥Vt e T,

f H(w—mr)f(dw,dr)+H(f (w—mr)f(dw,dr))—H(wo)Sx-fmin{t,f}f(dw,dr)
_ (6)

3 The optimal exploration-stopping problem

In this section, we solve the dynamic exploration-stopping problem. When the mar-
tingale (p;) is stopped at state y in period ¢, the DM obtains a payoff of U(y,t), where
U : S xT is continuous, bounded and nonnegative. Then, given admissible strategy
({us), ), the DM’s expected payoff is [E[U (., 7)]. The DM solves the following optimiza-
tion problem:

sup  E[U(pe, 7)), (©)
() T)EM

The nature of function U(y, t) depends on the application - we provide several examples
in Section 4. Here, we analyze problem (C) in its abstract form. Given Theorem 1, we can
solve (C) by maximizing over state-time distributions rather than entire processes (y;)
and stopping time 7. Thus, problem (C) reduces to

sup | UGuf(dpdo) @
feF

where the set of distributions [F is constrained by the information bound (2). We note
that the solution of (P) exists under mild conditions:

Lemma 1. Suppose tlim supU(u,t) =0, (P) has a solution.

Proof. See Appendix B.1. Q.E.D.

Since Equation (2) is a concave constraint, (P) is a linear program and can be computed
efficiently. To solve (P) analytically, we identify the shadow cost of information in the
constraint (2). In the following example, we illustrate our model in the canonical real
options problem. We identify the shadow cost in a simple one-period setting.

Example 1 (Real options). Real options play an important role in finance and economics
(see Dixit & Pindyck (1994)). We consider a DM who decides whether to take a risky
investment. The investment gives a payoff of u € S net of the investment cost I. There is a
safe outside option. Future payoffs are discounted with rate p. Let S = [0,1] and p = 0.5.
The payoff function U(y, ) = e " max {u —1I,0}.
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The martingale (y;) captures the expected value of a potential investment. In the
canonical real options problem, (y;) is exogenously given (typically a Brownian motion).
We consider the real options problem with active exploration, where the evolution of ;)
is determined by the exploration strategy of the DM. For simplicity, H(j) is normalized
to 0.

We begin with the one-period problem, i.e., when T = {0,1} and stopping can only
occur at t = 1. In this case (P) reduces to

sup Ef[U(p,1)]
fen(s)

s.t. Ef[H(p)] < x and Ef[u] = po.

This problem is equivalent to the static “rational inattention” model of Caplin & Dean
(2013). Here, we restate how they derive the shadow cost of information. Suppose at time
1, the agent could buy or sell information (measured by H) at the price of A(1). If the DM
stops at y, then utility net of the cost of information is U(y, 1) — A(1)H(p). Since the DM
also needs to respect the constraint [E¢[u] = po, the solution is obtained by looking at
points

(1w U(p, 1) = A(1)H(p)),

and taking a convex hull. Hence, it is optimal to stop at points where
Ulp1)-AMH(p) =a- p

for some a € R? with inequality U(y, 1) < a-pu+A(1)H(u) holding everywhere.> Evidently,
the lower A(1)is, the wider the distribution f becomes. The value of the multiplier A(1) >

0 is determined by a binding information constraint, i.e., 6

E¢[H ()] = x. (7)

Figure 2 illustrates the solution. The two red dots depict the points that U tangents
ap+A(1)H(p), i.e., the optimal stopping states. A(1) is pinned down by leading to Equa-
tion (7).

Dynamically, the shadow price of information is a function A : T — [0, 00) that sets
the price for information in every period. It is weakly decreasing: earlier information is
weakly more valuable as it gives the DM more opportunities to stop. Below, we set up the
Lagrangian to understand the determinants of the dynamic shadow price of information
for our problem.

>Note that our embedding of S in IR? normalizes p to (u,1 — p). Hence, y-(ag,a;) = (ag —a;)p +a; is an
affine function of p.
%In a corner case, A(1) = 0 if it leads to a slack information constraint.
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0.0 0.5 1.0
Figure 2: Real options (one period)
Computed with H(u) = (//L—yo)z and parameters x = 0.1, p=0.5,1 = 0.5, yg = 0.5.
3.1 Strong Duality & First-order Characterization

We make a few more definitions to set up the Lagrangian. Let T° := T \ {0}. Define
G: T° — R as the gap in the inequality constraint (2):

GU %(x-(jmin{t,r}ﬂdy,dr))—H(f W)= | HGifdndo+ Hiw)|

Note that the capacity cumulates linearly in time; hence, we normalize the gap by a fac-
tor of % The relevant space of state-time distributions is A, = {f € A(S x T)[E¢[u] =
po, G(f) € L*(T°)}. The shadow cost of information is a non-increasing function A on T°:

Alt) ::f dA(s),

for some Borel measure A on T°. The relevant space of measures is IL := {1 € B(T°)|A €
L'(T°)}, those for which the total shadow value of obtainable information is finite. We
can write the Lagrangian for our problem as

L(f,A) 1=J; TU(%T)f(d%dTHJ- G(f)(#)dA(#). (8)
Then, the primal problem (P) is equivalently described by
sup inf L(f, ) (P)
fEAﬂ() Aell

We show that under mild technical conditions, strong duality holds:
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Lemma 2. Suppose T is finite or a compact interval, then strong duality holds, i.e. (P)=(D)
and there exists A € IL that solves (D).

Proof. See Appendix B.2. Q.E.D.

We say that A € IL gives the shadow cost of information if strong duality holds and A
solves (D). Then, given the shadow cost of information A, we can find all solutions to (P)
by maximizing the Lagrangian £(f, A).

Next, we characterize candidate stopping points given shadow cost of information
A € L. We proceed somewhat informally to lead up to our next theorem. Consider point
(, 7). The weight that measure f assigns to this point affects £ linearly in three places,
and nonlinearly through the term

H(f tﬂf(dﬂ,df))

for all times ¢ < 7. Notice that, even though total measure f no longer integrates to 1 in
this thought experiment, the Lagrangian is still well-defined.
The derivative of £ with respect to mass f at (u, 7) is

lpa(pr):=U(p, )+ xJ

t<t

A(t)dt—ft . VHIENAG) = AH(),

where 77, := [ pf (dp,dv).”
Since we must also respect the constraints that Ef[u] = pg and total measure f must
integrate to 1, it is optimal to stop only at points (y, ) where

la(wt)=a-p

for appropriately chosen vector a € R"*!, with inequality lfA(4,7) < a- p holding at all
other suboptimal points.

Theorem 2. Iffor AelL,ae R+ f €F and a selection of VH(0), for all p€ S,
Ia(mr)<a-p (9)
holds with equality on the support of f, i.e.

f(a =L o) f (s dr) = 0, (10)

and the complementary slackness condition JG(f)(t)d/\(t) = 0 holds. Then, f solves problem
(P), and A gives the shadow cost of information.

"When t > f := supsupp(f), % = 0 and the subdifferential VH(0) is a set. A selection of VH(0) is needed
to specify Iy ). For notational simplicity, we denote the selection of VH(0) also by VH (y;) when writing I .

13



Conversely, if A gives the shadow cost of information, then for all f solving (P) with bounded
lf,,\ near T = 0, there exists a € R"™! such that for all p€ S, (9) and (10) hold for a selection of
VH(0).

Proof. See Appendix B.3. Q.E.D.
We illustrate Theorem 2 by revisiting Example 1 in a dynamic setting.

Example 2 (Real options - two periods). Consider the real options problem in Example 1
but with T = {0, 1, 2}. There are two possible times to stop 7 = 1 and 7 = 2. Let the shadow
cost of information be A(1) and A(2) at t = 1 and t = 2, respectively.

In period 1, as we have already derived in Example 1, the DM’s stopping utilities and
continuation values at any stopping state y; must be at level

ap-p+ A(1)H(p) (11)

for some a; € R™!. In Figure 3, the top blue solid curve corresponds to (11) and contains
two possible y; for our example. The red dot corresponds to stopping and the black cross
corresponds to belief y; = ji; with which the DM would continue to the second period.

The period 2 problem is the same as the period 1, except that the “prior” is ji;. In
period 2, the DM’s stopping utilities must be at level

a-p+ A(2)H(p) (12)

for an appropriate belief multiplier a, € R""!. The bottom blue solid curve in Figure 3
corresponds to (12) in our example. There are two possible stopping values of p; in this
curve.

What is the relationship between the two blue solid curves (11) and (12)? The portion
of (12) between the two red dots is the DM’s value function at time t = 2 when he can buy
or sell information for the price of A(2). Hence, the continuation value function at time 1
in case of not stopping is given by

ar-p+ AR)H(p) + A2)x, (13)

since the DM can sell the y amount of information acquired over time interval (1,2] at
price A(2). The thin red curve in Figure 3 corresponds to (13). From optimality, the
continuation value at 77 (in the event of not stopping at time 1) must be on curve (11),
and any suboptimal continuation value must be weakly below. It follows that the thin red
curve (13) must lie weakly below the top blue curve (11), with smooth pasting at belief
fi1, as illustrated in Figure 3.

The smooth-pasting condition is

a + A(2)VH(fiy) = a1 + A(1)VH (1),
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Figure 3: Real options (two periods)
Computed with H(p) = (i — pio)? and parameters x = 0.1, p = 0.5, 1 = 0.5, po = 0.5.

or equivalently, a;,; —a; = VH(ji;)A(t). This exactly gives Theorem 2, which implies that
the DM'’s continuation value on the path of the optimal solution is of the form

T

at~y+A(t)H(y)—Xf

A(t)dt, a;= a—f VH(ji;)dA(t).
0 te(0,7)

Example 2 explains the economic implication of the FOC (9). The constrained opti-
mization problem (P) is equivalent to an unconstrained problem with objective function

leawt)—a-p= U(p1) +)(j A(t)dt— A(t)H(p) — as- ,
t<t
~— ————— ~— ~—
Stopping payoff ~ Shadow price of ~ Shadow price of Shadow price of
endowments information martingale constraint

where da; = VH(ji;)dA(t). In the unconstrained problem, the DM is endowed with x unit
of information per unit time. She “exploits” information to come to a stop and obtain a
stopping payoff U. If there is either a surplus or a deficit of information, she can sell or
buy information at price A(t). The violation of the martingale constraint E¢[u] = pq is
punished at prices a;.

With Theorem 2, solving the exploration-stopping problem boils down to solving the
shadow prices A(f). Let p*(f) denote the maximizer of I¢ y(u,7) —a- p for every t. Then,
the equality condition (10) defines an integral equation for A(t) on the support of f:

UG (5,6) + X LtA(S)dS — AOH ()~ a, (1) = 0,

Therefore, we obtain a unified method for analytically solving the dynamic exploration-
stopping problem. In Section 3.2 and Section 4, we leverage this method to derive gen-
eral implications and complete solutions in various economic applications. We revisit
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the first-order conditions (9) and (10) in Section 4.1, where we develop further under-
standing of the optimal exploration-stopping problem from the point of view of dynamic
programming.

3.2 Implications and extensions

In this section, we derive several general implications of optimal exploration and stop-
ping. Moreover, we show that our methodology can be easily generalized to handle the
case with endogenous capacity.

3.2.1 Coarse support

In Example 2, the solution exhibits a coarse support property, illustrated by Figure 3,
where the stopping distribution involves at most two points in the support per period.
Proposition 1 proves that the coarse support property holds generally, with the size of
support bounded by n + 2.

Proposition 1. Suppose time is discrete, i.e. T ={ty =0,t,...,t;} and U € C(S x T), there
exists f* solving problem P s.t. Vt € T,

[supp(f*(- )l <n+2.
Proof. See Appendix B.4. Q.E.D.

The numerical example below (depicted by Figure 4) shows that the bound n + 2 is
tight. In this example, we take the two period problem in Example 2, and add one extra
possible option that pays in the low state. The stopping distribution of 7 = 2 involves
three points, each corresponding to one possible option.

0.4 1

0.3 1

2 0.2 1

0.1 1

0.0 1

0.0 0.2 0.4 0.6 0.8 1.0
7

Figure 4: Illustration of Proposition 1
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We state Proposition 1 in discrete time because the “support” of f at a single ¢t is
meaningless in continuous time. Evidently, Proposition 1 implies that the continuous-
time problem has an approximate discrete solution that has coarse support. Technically,
Proposition 1 is an extension of the coarse support property of the static information
design problems (Kamenica & Gentzkow (2011); Zhong (2018); Doval & Skreta (2022))
to the dynamic environment.

3.2.2 Time preferences

In the literature on dynamic information acquisition (see Zhong (2022)), a stark pre-
diction is that the optimal exploration strategy is “Poisson”, i.e., the martingale process
either drifts along a deterministic path or jumps directly to the stopping region. In this
section, we reveal that the optimality of such exploration strategies is closely related to
time preference.

We consider the model where T =IR* and U(y, t) = g(u(u),t). Here, u(u) is the “mate-
rial payoff” from state y, and g “discounts” the payoff in a general way. We assume that
ueC(S), ge CPR? and g/(v,t) < 0. In what follows, we analyze three cases correspond-
ing to convex, linear, and concave g as a function of time.

Convex time preferences and Poisson process. Convex time preference is the most
commonly adopted modeling assumption as it nests the case of exponential discounting,
where ¢(v,t) = eP'v. More generally, it also covers settings with time-varying discount
rate like g(v,t) = e Py, where p” < 0 (e.g. hyperbolic discounting).

Proposition 2 (Convex time preference). Suppose g/'(v,t) > 0 and g,/ (v,t) < 0, with at
least one of the inequality being strict. Then, if f solves (P) and A gives the shadow cost of
information and Iy ) is bounded, the ({p;), T) that implements f must satisfy

Prob(/,tt = ﬁt|t < T) =1,
where y; = E[p.|t > t].

Proof. See Appendix B.5. Q.E.D.

g/ (v,t) > 0 means that the stopping utility is convex in time, i.e., the DM wants to
diversify the decision time. The submodularity g’,(v,t) < 0 means that the DM wants to
“frontload” stopping decisions with high payoffs and “backload” those with lower pay-
offs. When either of the incentives is strict, Proposition 2 predicts that the process that
implements f must be degenerate conditional on continuation. In other words, the op-
timal martingale process must be a Poisson process that always jumps into the stopping
region. This general result nests the models in Zhong (2022) and Hébert & Woodford
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(2023) that predict a Poisson belief process under exponential discounting. Moreover, it
reveals that the feature of the Poisson learning process is the implication of the convexity
exhibited by exponential discounting.

On a side note, Proposition 2 also predicts the uniqueness of the martingale process
that embeds f. Since the stopping behavior is fully characterized by f, the multiplicity
of the optimal process comes from the undetermined interim process |t < 7. In the
environment described by Proposition 2, the interim process is uniquely pinned done
by ;. Therefore, the process that embeds f is essentially unique ({#min{t,r}) has unique
distribution).

Linear time preferences and Brownian process. In contrast to the convex case, when
8/ (v,t)=0and g, (v, t) = 0, the optimal process exhibits multiplicity and can behave very
differently. We begin with a result showing that Equations (C) and (P) reduce to a static
problem.

Proposition 3 (Linear time preferences). Suppose g(v,t) = v —«t, then, ({y;), T) solves (C) if
and only if the distribution of u, solves

sup By [u(p)—x/x (H(u)—H(uo))] (14)
neA(S)

subject to E, [u] = po.

Proof. See Appendix B.6. Q.E.D.

Given 1 € A(S) with [E [u] = pg that solves Equation (14), one simple Poisson process
that satisfies the information constraint and has the distribution of y, given by 7 is the
“dilution” of 7: p; stays constant from p and jumps to a random location according to 7

X . .
B HG)-HG0)]* However, it is not the only such process. Another
simple example is specified by

at constant Poisson rate

S 1) = () X O _ enitgn-tuo)s
X

namely, the stopping time is degenerate. Any such process solves (C) by Proposition 3.

In fact, Hébert & Woodford (2023) shows for a payoff of the form g(v, t) = v —«t, there
exists a Brownian martingale that solves (C). Hébert & Woodford (2023) considers opti-
mal learning for this class of utility functions, assuming that y; is restricted to Brownian
martingale described by SDE

dp; = 0, dB; (15)

that satisfies our information constraint (1). Here, B, is a Brownian motion of dimension
n and o; is any vector whose entries add up to 0 to ensure that y; stays in the probability
simplex. In this setting, the following result holds.

8Proposition 5 was proved in the working paper version of Zhong (2022).
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Proposition 4. (Heébert & Woodford (2023)) With constant waiting cost, the dynamic utility
maximization problem under Brownian learning (15) subject to (1) is equivalent to Equa-
tion (14).

Concave time preferences and exploration. When the time preference is concave, we
show that the optimal stopping time is contained in a window of bounded length. Hence,
when the window is sufficiently short, the optimal exploration policy necessarily involves
“pure exploration” at the beginning, i.e., acquiring information that will only be used
later in the exploitation window. Define two functions:

t) = (v, t);
J(t) vrg;}g)gt(v )

t) = min g/(v,t).
I(t) = min &(@.1)
Evidently, J(t) < J(t). When g/ (v,t) < 0, both J(t) and J(t) are negative and strictly de-
creasing. Therefore, ]! o] defines a a function satisfying ! oJ(t)>t.

Proposition 5 (Concave time preference). Suppose g/'(v,t) <0, f solves (P) and A gives the
shadow cost of information and I, is bounded. Let t = inf,cr Supp(f), t = sup,.r Supp(f),

E<] o ](b)
Proof. See Appendix B.7. Q.E.D.

Proposition 5 states that when the time preference is concave, the stopping time must
be contained within an interval, whose length is determined by the variation of g, across
different v’s. In the extreme case where g/(v,t) does not vary with v (e.g. g is additively
separable), | and J coincide; hence, the optimal T must be degenerate. More generally,
fixing the variation of g/ across v, the interval is narrower when g is more concave in
time, i.e., when g/(v, t) decreases faster.

The intuition for the result is exactly the opposite of the convex case. The concave
utility in time means the DM wants concentrated decision time. An indirect implication
of Proposition 5 is that concavity of the time preference incentivizes the DM to explore
without exploitation for a period of time before stopping so that she can stop quickly
within a short window of time.

We illustrate Proposition 5 using a numerical example, where u(y) = max{y — 0.5, 0}
and g(v,t) =v- (1 —ct) - cyt>. We choose ¢; = 1/16 and ¢, = 1/32. Figure 5 illustrates the
distribution of f on the time dimension (the red histogram). ] and J are the two black
lines. The dotted segment is ! oJ(t) —t, which equals % for every t in this example.

The analysis in Section 3.2.2 nests a series of works on dynamic information acquisi-
tion and provides the near-complete characterization of the pattern of optimal informa-
tion acquisition strategy. The Poisson learning is justified by convex time preferences (see

19



0.5

0.000 -
—0.025 L 0.4
—0.050 - N

_ L 0.3 o

-~ o

< —0.075 - >

3 2
~0.100 - r02.3
—0.125 Lo
—0.150 -

T T T T T 00

Figure 5: Concave time preference

Zhong (2022) and Chen & Zhong (2024)). Brownian learning is justified by linear time
preferences (see Hébert & Woodford (2023)). The pure exploration is justified by con-
cave time preferences (see Chen & Zhong (2024)).° To further understand the connection
between time preference and exploration, in Section 4.2, we provide the solution to an
information acquisition problem under fully general time preference.

3.2.3 Endogenous capacity

In many applications, the DM may choose the rate of information arrival at cost. This
section shows that our main theorems generalize to such a setting. The DM chooses mar-
tingale (y;) in S, a bounded process (x;) in R" and a stopping time 7 that are measur-
able w.r.t. the filtration (F;) generated by (u;). The tuple ({p),{x:),T) is admissible if

Vt,t’e T,t’>t
tl
J Xsds ft},
t

denoted by ({y;),{x:),T) € M. Given the learning rate x; at time ¢, the DM pays flow cost

E[H(py) - H(p )| F] <E

of ¢;(x;), where Vt, ¢, is convex. Then, the DM’s optimization problem is

Sup ElU(PT:T)—J Ct(Xt)dtl- (C1)
(e xe)T)EM t<t
Analogous to the derivation of (P) from (C), a “relaxed” problem of (C1) is

sup JU(m)f(du,dw ‘L a1~ F(o)ds (P1)

FEN(SXT),xeL>(T)

9 Georgiadis-Harris (2021) also predicts pure exploration as an outcome of exogenous random stopping
time that is not controlled by the DM.
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st J<tH<#)f(dﬂ,dT) + H(f tuf(dy,dw) ~H(po) < L/‘S“ ~ F(s))ds,

where F(t) = L<tf(d;4, d).!? Note that in (P1), we implicitly restrict the stochastic learn-
ing rate x; to be a deterministic function of time. Nevertheless, we prove in Lemma 3
that such restriction is without loss.

Lemma 3. (C1)=(P1) and for all (f, x) feasible in (P1), there exists admissible strategy ({u)s, X+, T)
of (C1)s.t. (pr,T)~ f.

Proof. See Appendix B.8. Q.E.D.

Then, we can write the Lagrangian of Equation (P1) as

L(F o A) ::j U(u;r)f(d%dr)—jct(x»(l —P(t))dt{[qus(l ~F(s)ds

—H(j tuf(du,dr»—LtHWf(dﬂ,dr)+H<m>)d/\<t>

The dual problem is

inf  sup L(f,x,A). (D1)
/\GH‘fGA”O,XEL‘X’

The same technical conditions as in Lemma 2 guarantee strong duality.

Lemma 2-A. Suppose T is finite or a compact interval, then strong duality holds,i.e.
(P1)=(D1) and there exists A* € IL that solves (D1).

Proof. See Appendix B.9 Q.E.D.

Lemma 2-A allows us to characterize the solution of Equation (P1) via first order con-
ditions. Define the derivative of £ with respect to f at (y, 7) as:

e A (i T) i= U(V:T)—J

<t

() dt +f Al)xedt —f VH()AA(®) - p— A(0)H(p)
t<t t<t
The FOC w.r.t. f at (p,7) is

lr xA(1,T) <ap, with equality on supp(f). (16)

The FOC w.r.t. y at T is

ce(x7) = AlT). (17)

'0Whether ¢ is included in the domain is inconsequential since it only affects F(t) on a zero measure set
and x € L*(T).
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Theorem 2-A. If there exists A, f, x,a and a selection of VH(0) such that (16),(17) and the
complementary slackness condition hold, then (f, x) solves (P1).

Conversely, if A gives the shadow cost of information, for all (f, x) solving (P1) with
It,x,1 bounded from above near 7 = 0, there exists a € R™! such that (16),(17) hold for a
selection of VH(0).

Proof. See Appendix B.10. Q.E.D.

4 Applications

4.1 Real Options

We have already analyzed the real options problem with one period and two periods
in Examples 1 and 2, respectively. Recall from Example 1 that U(y,t) = e P*max{u—1,0},
representing a DM deciding whether to make a risk investment to obtain a stochastic
payoff y—1I. In what follows, we analyze the real options problem with active exploration
in continuous time and connect it to the canonical problem with passive exploration. !!
Consider the canonical setting where the DM learns information about a potential

investment passively, so the expected value of investment follows
dus =odz,, (18)

were Z is a Brownian motion. For this problem, there exists a closed-form solution in
which it is optimal to invest when p; reaches the critical threshold of

y*:I+L.

Sy

The value function is given in closed form by

(# —I)eXp(@(ﬂ - ﬂ*)) ifp<p

pu—1 ifu>p.

How does this solution change if, instead of learning passively, the DM actively col-

Vp(p) =

lects information subject to the constraint (1)? Specifically, assume that H(u) = u? and
x = 02 so that the choice to learn Brownian information leads precisely to equation (18).
This case is isomorphic to the information acquisition model of Zhong (2022). Zhong
(2022) characterized the value function via the Hamilton-Jacobi-Bellman (HJB) equation

xv=I-V(u)-V'(p)(v-pn) . .
X = f
vy ={ o HG -Hp -H @ —p = (19)
u—1 if >,

"' The canonical real options problem does not limit the lower bound of the state. To make the analysis

consistent, in this example, we let S have a sufficiently negative lower bound.
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where pi* > p* since the value function under active learning V (y) must be (weakly) higher
than Vp(p). The left panel of Figure 6 illustrates these properties by comparing value
functions V(u) and Vp(p).

i 1
0.5 1
— V(u e
— Vp(p) % o .
----- intrinsic value v active learning
9] <
5 = -
E g passive learning -
> 2 ,
3
>
g
0.0 7 0.0 1 ===
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Figure 6: Active and passive learning
Computed with H(u) = (4 — pg)? and parameters x = 0.1, p = 0.5, 1 = 0.5, pg = 0.5

We also see that V(u) is significantly higher than Vp(y) when the option is deep out
of the money. This is where active learning is different. While it takes an extremely long
time for the option to get in the money due to volatility alone, active learning does much
better by ‘shooting for the moon.” Under active learning, optimal policy performs experi-
ments that allow y; to jump up to v(y;) with Poisson intensity defined by the information
constraint (1), with downward drift in the event of no jump. The right panel of Figure 6
illustrates that v(u) starts from ji* and increases as p drifts down. As the left panel indi-
cates, experiments that reveal a high value of y with a small probability can improve the
option value significantly.

To illustrate that our method nests the dynamic programming approach in the special
case of exponential discounting, we derive Equation (19) from our first-order conditions.
Let e P’V and e P'V’ be the level and slope of a,51; + A(t)H (1) — )(fOtA(s)ds at y;. Then,
the optimal stopping state p* is determined by Equation (10):

0=maxe P (u—1I)- at;/t+A(t)H(,u)—)(J:A(s)ds) (20)

H
B (p—1)-V =V'(u—1y)
e '
A= M G T G — H () i —7y)

The equivalence of Equations (20) and (21) is illustrated in Figure 7, where the pink line
represents e P'V +e P!V’ (u—1;). Then, (20) minimizes the segment @ and (21) maximizes
the ratio y/f, which are both attained at the red dot.

We have derived in Example 2 that the levels of the blue curves at y; at two peri-
ods dt apart differ by xA;dt. Since the value function is stationary due to exponential

(21)
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Figure 7: Derivation of the HJB equation

discounting, this difference is e 'V — e P("+d)/ Therefore, taking dt — 0,
XA, =pe PV, (22)
Combining Equations (21) and (22),

P p—I-V—-V'(u—py)
—V =max — — —,
X po H(p)—H(p) — H' () (v = 1z)

which is exactly Equation (19), where the value function is given by

t

V() = e (a7 + AH () - xj

A(s)ds).
0

Of course, when the discount function is not exponential, the HJB equation approach
involves much more complicated partial differential equations, rendering the method
underpowered. In the following sections, we illustrate the power of our method via two
applications where the DM exhibits a general time preference.

4.2 Time preferences: exploration, exploitation, precision, and speed.

In this application, we apply our method to an information acquisition problem with
binary decision. There is an unknown payoff relevant state x € {L, R}, with equal prior
probability. There are two possible actions a € {I,r}. The Bernoulli utility is %p(t) if the
action matches the state (I|L or r|R) and —%p(t) otherwise (I|R or r|L). We assume that the
discount function p € C)IR* is decreasing and lim,_,, p(t) = 0.

Let S = A(X) =[0,1]. The DM chooses her belief process (y;), the stopping time 7, and
an action upon stopping. In this problem, we consider the variation constraint defined
by H(u) = |u—0.5|%, where a > 1. The stopping utility is

U(pt) = p(t)-|p—0.5].
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The FOC Equations (9) and (10) reduces to:

p(t)|lu—0.5+ J xA(s)ds— A(t)jp—0.51* < b,
s<t

with equality on the support of f. Let p*(t) > 0.5 be the belief that maximizes the LHS
of the FOC. Then, p*(t) = (p(t)/A(t))ﬁ. Let &£(t) be the minimal gap in the inequality of
FOC for every t. The FOC reduces to:

oo Soy) e Awseen = (23)

with &(t) = 0 on the support of f.

4.2.1 The pattern of exploration

We first characterize the optimal pattern of exploration. We make the following as-
sumption on the discount function p:

Assumption 1. p € C’R", {t|%p(t)aaf1 > O} and {t|%p(t)aafl < 0} each constitutes finitely
many intervals.

Assumption 1 states that the convexity of pﬁ only switches finitely many times. It is
a pure technical condition that ensures that the optimal exploration policy also switches
pattern finitely many times.

Proposition 6. Given Assumption 1, suppose f, A and & € CR* solves Equation (23). Then,
three finite collections of intervals form a partition ofsugp\(f):

1. Region A where &(t) > 0 and A(t) = 0. Let (t',t”) be such an interval:

(a) %p(t)ﬁ <O0fort—t’;
(b) Ift' >0, then %p(t)ﬁ switches sign at least once in (t/,t”).
(c) f(S,(t,t"))=0.

2. Region € where E(t) = 0 and A(t) > 0. In this region:

(a) supp(f)= {0.5 i(ap[{t()t))’“}.

3. Region R where &(t) = 0 and dt2p( )a-1 = 0.

Proof. See Appendix C.1. Q.E.D.
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Proposition 6 shows that the optimal information acquisition strategy involves three
patterns that are dictated by the convexity of the (adjusted) discount function p(t)a-T, or
equivalently, the time-risk attitude. 2

* Pure exploration region A: in this region, there is no stopping probability (property
1.c). Therefore, information is “accumulated” for future use. A pure exploration
period always involves a period of “convex then concave” p(t)% (property l.a &
1.b). The key driving force behind pure exploration is that the concave part of
the discount function implies time-risk aversion. Therefore, the DM would like to
accumulate knowledge so that she is able to later utilize the accumulated knowledge
to make decisions within a short period of time — the time risk is minimized.

* Full exploitation region &£: in this region, Equation (2) is binding, implying that the
continuation belief of any implementing belief process must be degenerate and con-
stant. Therefore, information is “exploited” at the maximal rate to reach immedi-
ate decisions. A full exploitation period typically involves “concave then convex”
p(t)aT. The key driving force behind exploitation is that the convex discount func-
tion means time-risk loving. Therefore, the DM maximizes the time risk by induc-
ing a dispersed decision time.

Note that during the period of full exploitation, exploration continues. However, all
information explored is immediately exploited by stopping and making a decision.

« Time-risk neutral region R: in this region, the adjusted discount function pa-1 is lin-
ear, implying that the DM is time-risk neutral. Unlike A and &, there is no unique
prediction of the optimal belief process since the DM is essentially indifferent be-
tween different distributions of the stopping time that have the same expectation.

It is worth pointing out that the switch between the two patterns strictly precedes the
switch of time-risk attitude. This is because the consequence of pure exploration is not
instantaneous — it takes time to accumulate sufficient information to make a decision.
Therefore, the DM will start to accumulate information while anticipating the time-risk
aversion in the near future. Vice versa, anticipating time-risk loving in the sufficiently
near future, the DM starts full exploitation right away. Proposition 6 immediately implies
the following corollary.

Corollary 2.1. The optimal policy involves pure exploration (full exploitation) when p(t)%
is globally concave (convex).

2Gince a > 1, pﬁ is “more convex” than p. So the convexity of p(t)ﬁ does not exactly match the
convexity of p. The discount function is adjusted to accommodate the fact that achieving the same decision
quality is easier later than earlier. Therefore, the later payoffs are discounted further by a factor of pﬁ.
In what follows, we refer to the “time-risk attitude” as defined by the convexity of the adjust discount
function.
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Figure 8 illustrates Proposition 6 and Corollary 2.1. From left to right, the first row of
each column depicts the optimal information acquisition policy when the discount func-
tion p is given by the second row. In all figures, the red dots are the stopping beliefs, and
the blue dots are continuation beliefs (plotted only when uniquely determined). The first
two columns show the two corner cases in Corollary 2.1. In column 1, p(t) is the stan-
dard exponential discounting function, which implies global time-risk-loving preference.
The optimal belief stays at the prior until it jumps to one of the two constant stopping
boundaries at a Poisson rate (pure exploitation). In column 2, the DM is globally time-risk
averse. The optimal stopping time is degenerate (pure exploration). The belief process
that implements the optimal f is not unique.

Column 3 illustrates a general case where the DM switches from time-risk averse to
time-risk loving twice. The optimal belief process switches from pure exploration to ex-
ploitation exactly twice. As is predicted by Proposition 6, each exploration region (except
the first one) covers at least one time-risk-loving region and ends in a time-risk-averse re-
gion. In other words, the switch between the two patterns strictly precedes the switch of
time-risk attitude.
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Figure 8: Information acquisition & time-risk preference

As a final remark, while the time-risk neutral region R might exist in general (where
p is flat), there always exists an optimal exploration strategy that consists of only pure
exploration and full exploitation.

Definition 1. f € A(S x T) is a pure strategy if it alternates between only pure exploration
and full exploitation, i.e. jG(f)(t)f(dy,dt) = 0.
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Proposition 7. The information acquisition problem has a pure strategy solution f.

Proof. See Appendix C.2 Q.E.D.

4.2.2 Speed v.s. accuracy

In this section, we study the speed-accuracy tradeoff in dynamic exploration. We

focus on the full exploitation case (p(t)ﬁ is globally convex) where decision time has full

support. The accuracy of decision is measured using parameter x(t) = (u*(t) - 0.5)*7! =

i(—/t\)(t) Evidently, x(t) is isomorphic to the precision of the posterior belief upon stopping

as well as the stopping payoff. Equation (23) reduces to the following ODE about «:

_dlog(p(t)) _ K'(t)+ x - K(t)afll
dt — (a=1)x(t)

(24)

Note that the LHS of Equation (24) is the discount rate (of an exponential discount func-
tion). Therefore, the sign of the rate of the LHS represents whether there is accelerat-
ing/decelerating discounting. Proposition 8 below shows that it is crucially related to the
evolution of decision quality.

Proposition 8.
* Increasing accuracy: x’(t) > 0 & k" (t) <0 = decreasing discount rate.
* Decreasing accuracy: x’(t) <0 & x”(t) > 0 = increasing discount rate.

» Constant accuracy: «’(t) =0 < constant discount rate.
Proof. See Appendix C.3. Q.E.D.

Proposition 8 provides a foundation for the speed-accuracy/inaccuracy tradeoffs that
are observed in neuroscience binary choice experiments (see a survey by Ratcliff et al.
(2016)). Instead of analyzing a parametric drift-diffusion model (DDM) (e.g. the DDM
with optimal stopping studied in Fudenberg et al. (2018)), we fully endogenize the explo-
ration process. The main focus of Proposition 8 is analogous to the study of time-varying
stopping boundaries in the DDM models. Our model provides a closed-form charac-
terization of the boundary and shows that its slope is closely related to the slope of the
discount rate.

Proposition 8 predicts that the typical speed-accuracy tradeoff observed in the binary
choice experiments is rationalized by a decreasing discount rate. This is intuitive — antic-
ipating decelerating discounting in the future, the DM would take advantage of that and
back-load the high-accuracy decisions. On the other hand, speed-accuracy complemen-
tarity occurs under accelerating discounting, which fits decisions under time pressure.
Constant accuracy occurs if and only if the discount rate is constant.
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Figure 9: Decision accuracy & discount rate

4.3 Continuous-time contest

In the second application, we apply our model to a strategic contest setting. In par-
ticular, we are interested in the continuous-time contest setting. While the literature has
studied competition in the dimension of the stopped value of a stochastic process (Seel
& Strack (2013), Seel & Strack (2016)) and the dimension of stopping time (Park & Smith
(2008)) separately, we study a novel setting where (i) both the stochastic process and stop-
ping time are fully endogenized and (ii) contestants’ payoffs depends on both value and
stopping time.

We assume that there are n > 2 contestants, each choosing privately a martingale pro-
cess () in S = [-M, M] starting at ,uf) = 0 and a stopping time 7’. The payoff to contestant
i given the profile of stopping time ¢ and stopping state y is:

lti:min{t}

i dogy _ mrth i
Uy =™ - I #argmin(t}’

The interpretation is that the contestants compete in conducting research on the same
topic. Each contestant chooses privately how she explores, which affects the stochastic
quality (u!). The first contestant who stops (submits a paper/grant) receives a reward
(publishing a paper or receiving a grant) proportional to the quality of the research |i].
For tractability, we assume that all contestants have the same variation bound specified
by H(v) = |v|%, where a > 1.

The equilibrium of the contest is specified by a collection of independent exploration-
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stopping strategies ({u}'), T st Vi,

(') el carg max  E[U (G, )]
()t )eM!

In an equilibrium, each contestant takes other contestants’ strategies as given and
best responds by choosing her own strategy. By defining the equilibrium this way, we
implicitly assume that each contestant chooses her strategy privately; hence, the strategy
of player i does not depend on the realization of ({u;*), 7).

We are interested in equilibria with the following technical properties:

Definition 2. Equilibrium ((u}'), )" is a pure strategy equilibrium if all f' ~ (e, )

(i
are pure strategies.
In other words, pure strategy equilibria are those in which each contestant alternates

between pure exploration and exploitation as was described in Definition 1. The technical
restrictions allow us to characterize all equilibria of the contest.

Assumption 2. ﬁ <M?,

Assumption 2 guarantees that the equilibria we identify will be interior. It is without
loss of generality as M can be chosen arbitrarily large.

Proposition 9. Suppose Assumption 2 holds. Let C = max{l —(n—1)(a —1),0}. In any pure
strategy equilibrium of the game, all players adopt the identical strategy indexed by parameter
t€[0,+o0]:

* On the domain [0,t), p; starts at O until it jumps to u; or —y} at rate $A; and T is the
first jump time of y,, where'3

. X C(l . e(a—l)r(t—i)) %
Pe ==

r a-1
P (a—1)r 7
C(l _ e(a—l)r(t—t))
Proof. See Appendix C.4. Q.E.D.

Proposition 9 states that contestants use pure exploitation strategy in all pure strategy
equilibria of the contest game. To illustrate the proposition, in figure Figure 10, we plot
three possible equilibria of the game. In Figure 10(a), we plot the stopping quality p; as
functions of t. Each color corresponds to one equilibrium in the game. In Figure 10(b),

13When f = 0 or C = 0, the strategy stops immediately at 0. When = +o00, we define e(@~Dr(t=0) .= 0,
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we plot the “effective discount factor”, i.e., e™"

!, scaled by the probability that at least one
other contestant has stopped in the equilibrium.

As we have discussed in Section 4.2, Proposition 9 implies an endogenous time-risk
loving preference among all contestants. As is illustrated by Figure 10(b), the effective
discount factors are convex in time, justifying the Poisson exploration strategy. Impor-
tantly, Proposition 9 also predicts uniqueness: the endogenous effective discount factors
are always convex. This is because, in the contest, each contestant solves the single-agent
exploration-stopping problem, taking others’ strategies as given. Propositions 6 and 7
implies that the only alternative exploration strategy that can occur is pure exploration.
However, pure exploration leads to concentrated decision time (a point mass in stopping
time). The point mass can never appear in equilibrium as other contestants can easily
sacrifice quality a little bit and “undercut” by stopping a little earlier.

1
(=X ya
r(a-1)

(a) (b)

Figure 10: Equilibrium strategies of the research contest game

A key message of Proposition 9 is that contest rules have strong implications on the
pattern of exploration. In our application, the “winner takes all” rule generates endoge-
nous time-risk loving, leading to quite risky exploration policies. Contestants employ the
full exploitation strategies that count on rare but significant breakthroughs.

4.3.1 Private v.s. public contest

So far, we focus on the case where each contestant’s progress is private. A rather inter-
esting observation is that the equilibria identified in Proposition 9 remain equilibria (up
to minor modifications) even if each contestant’s progress is revealed. The key observa-
tion is that under the learning strategy specified in Proposition 9, the event min{t*~"} > ¢
pins down a unique history for period t, that is, all y;' remain at 0.5. Then, the hazard
rate for s > ¢

wi(s)=r+(n-1)A;

remains the same conditional on this history. Therefore, conditional on any history where
no contestant has stopped yet, strategy ((y'), 7*) remains the best response for contestant
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i. Of course, conditional on the event min{t*~* < t}, no contestant has any incentive to
learn anymore. Therefore, the equilibrium strategy involves immediate stopping.

5 Conclusion

In this paper, we characterize the possible outcomes of exploration and stopping and
develop a general methodology for solving optimal exploration-stopping problems. By
fully delineating the connection between time preference and the pattern of dynamic
exploration, the current paper brought the theme of Zhong (2022) to completion. This
methodology has the power to drive research in at least two distinct areas.

The first is contest design. In Section 4.3, we illustrate how to solve the equilibria of
a contest given a specific reward structure. The same methodology can be used to solve a
general multi-agent exploration game, including, for instance, a cooperative exploration
setting. Ultimately, we hope that the current paper could be used to build a methodology
for designing optimal contests to obtain general goals regarding the outcome and timing
of exploration.

The second is dynamic persuasion/information design. A series of recent papers ex-
plore the optimal design of information provision to persuade an agent to engage with the
principal for longer (see Knoepfle (2020), Hébert & Zhong (2022) and Koh & Sanguanmoo
(2024)). The existing papers focus on very special preference structures, leaving the gen-
eral insight eluding. We hope that the current paper can be used to build a methodology
that fully illuminates information provision in principal-agent settings.

References

Anderson, A., Smith, L., & Park, A. (2017). Rushes in large timing games. Econometrica,
85(3), 871-913.

Arrow, K. J., Blackwell, D., & Girshick, M. A. (1949). Bayes and minimax solutions of
sequential decision problems. Econometrica, Journal of the Econometric Society, (pp. 213—
244).

Billingsley, P. (2013). Convergence of probability measures. John Wiley & Sons.

Caplin, A. & Dean, M. (2013). Behavioral Implications of Rational Inattention with Shannon
Entropy. Working Paper 19318, National Bureau of Economic Research.

Che, Y.-K. & Mierendorff, K. (2019). Optimal dynamic allocation of attention. American
Economic Review, 109(8), 2993-3029.

32



Chen, D. & Zhong, W. (2024). Information acquisition and time-risk preference.

Chen, M. K. (2013). The effect of language on economic behavior: Evidence from savings
rates, health behaviors, and retirement assets. American Economic Review, 103(2), 690—
731.

Chesson, H. W. & Viscusi, W. K. (2003). Commonalities in time and ambiguity aversion
for long-term risks. Theory and Decision, 54(1), 57-71.

Dasgupta, P. & Stiglitz, J. (1980). Uncertainty, industrial structure, and the speed of r&d.
The Bell Journal of Economics, (pp. 1-28).

De]Jarnette, P., Dillenberger, D., Gottlieb, D., & Ortoleva, P. (2020). Time lotteries and
stochastic impatience. Econometrica, 88(2), 619-656.

Dixit, A. K. & Pindyck, R. S. (1994). Investment under uncertainty. Princeton university
press.

Doval, L. & Skreta, V. (2022). Constrained information design.

Feng, H. & Hobson, D. (2015). Gambling in contests modelled with diffusions. Decisions
in Economics and Finance, 38(1), 21-37.

Feng, H. & Hobson, D. (2016a). Gambling in contests with random initial law.

Feng, H. & Hobson, D. (2016b). Gambling in contests with regret. Mathematical Finance,
26(3), 674-695.

Fudenberg, D., Newey, W., Strack, P., & Strzalecki, T. (2020). Testing the drift-diffusion
model. Proceedings of the National Academy of Sciences, 117(52), 33141-33148.

Fudenberg, D., Strack, P., & Strzalecki, T. (2018). Speed, accuracy, and the optimal timing
of choices. American Economic Review, 108(12), 3651-84.

Georgiadis-Harris, A. (2021). Information acquisition and the timing of actions. Technical
report, Working Paper.

Hébert, B. & Woodford, M. (2023). Rational inattention when decisions take time. Journal
of Economic Theory, 208, 105612.

Hébert, B. & Zhong, W. (2022). Engagement maximization. arXiv preprint
arXiv:2207.00685.

Jacod, J. & Shiryaev, A. (2013). Limit theorems for stochastic processes, volume 288. Springer
Science & Business Media.

33



Kamenica, E. & Gentzkow, M. (2011). Bayesian persuasion. American Economic Review,
101(6), 2590-2615.

Knoepfle, J. (2020). Dynamic Competition for Attention. Technical report, University of
Bonn and University of Mannheim, Germany.

Koh, A. & Sanguanmoo, S. (2024). Attention capture. arXiv preprint arXiv:2209.05570.

Lee, T. & Wilde, L. L. (1980). Market structure and innovation: A reformulation. The
Quarterly Journal of Economics, 94(2), 429-436.

Luenberger, D. G. (1997). Optimization by vector space methods. John Wiley & Sons.

Mayskaya, T. (2022). Dynamic choice of information sources. California Institute of Tech-
nology Social Science Working Paper, ICEF Working Paper WP9/2019/05.

Nikandrova, A. & Pancs, R. (2018). Dynamic project selection. Theoretical Economics,
13(1), 115-143.

Nutz, M. & Zhang, Y. (2022). Reward design in risk-taking contests. SIAM Journal on
Financial Mathematics, 13(1), 129-146.

Obl¢j, J. (2004). The skorokhod embedding problem and its offspring. Probability Surveys,
1(none).

Onay, S. & Onciiler, A. (2007). Intertemporal choice under timing risk: An experimental
approach. Journal of Risk and Uncertainty, 34(2), 99-121.

Park, A. & Smith, L. (2008). Caller number five and related timing games. Theoretical
Economics, 3(2), 231-256.

Ratcliff, R. & Rouder, ]J. N. (1998). Modeling response times for two-choice decisions.
Psychological Science, 9(5), 347-356.

Ratcliff, R., Smith, P. L., Brown, S. D., & McKoon, G. (2016). Diffusion decision model:
current issues and history. Trends in cognitive sciences, 20(4), 260-281.

Reinganum, J. F. (1989). The timing of innovation: Research, development, and diffusion.
Handbook of industrial organization, 1, 849-908.

Seel, C. & Strack, P. (2013). Gambling in contests. Journal of Economic Theory, 148(5),
2033-2048.

Seel, C. & Strack, P. (2016). Continuous time contests with private information. Mathe-
matics of Operations Research, 41(3), 1093-1107.

34



Skorokhod, A. V. (1982). Studies in the theory of random processes, volume 7021. Courier
Dover Publications.

Wald, A. (1947). Foundations of a general theory of sequential decision functions. Econo-
metrica, Journal of the Econometric Society, (pp. 279-313).

Zhong, W. (2018). Information design possibility set.

Zhong, W. (2022). Optimal dynamic information acquisition. Econometrica, 90(4), 1537-
1582.

A Proof of Theorem 1

A.1 Necessity of Equation (2)

For every admissible strategy ((y;), T) € M, the variation constraint implies [E [dH(yt)i}"t] <
X -dt, where t + dt € T. Integrating both side from 0 to min {¢, 7} yields an accounting in-
equality:

E[H(pminit,r)) = H(4o)| 70| < x - E[min {t, 7). (25)
Let f be the joint probability measure of y, and 7, Equation (25) implies

Ei<e [H(pt) = H(po)] + Epso [H(po) — H(po)] < x - E[min{t, 7}]
= H(E[plt < t])P(t <7T)+ B [H(pr)] = H(po) < x - E[min {¢, T}] (26)

H f}”?fdd:’dd: ]f Jf dp,dr) + J JH F(dp,dt) — H(po) (27)
. fdp, - <

<x- Jmin{t,r}f(dy,dr),

‘EH(J ﬂf(dﬂ,dS))+f tH(ﬂ)f(d%dT)—H(Vo) <x- Jmin{t,T}f(d%dT)-

The second inequality is from H being convex. The third inequality is from the optional
stopping theorem. The last inequality is from H being homogeneous.

A.2 Sufficiency of Equation (2)

We have shown that Equation (2) is a necessary condition for [F. In what follows, we
prove Theorem 1 by proving a slightly stronger sufficiency result. Consider the set of
cadlag martingales (p; )R, in S satisfying:
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E[H(p) - H(w)| 7] < x (£ - 1)

for all ' >t > 0. Let the collection of all such processes and corresponding stopping time
be M and

F = {f e A(Sx T)A({pus, 7)) € Ms.t. f ~ (yf,r)}.

M extends the definition of the martingale and stopping time from T to R*. Note that
F c FF since any pair ({y;),7) C M such that supp(t) C T has projection ({y;)er, T) € M. In
what follows, we prove Theorem 1 by showing that Equation (2) is a sufficient condition
for TF.

Proof. For each n, discretize R, to a finite grid t € {t; =0,...,t,}. The sequence of the
grids satisfies lim,,_,., max{t; —t;_;} — 0 and lim,,_,o, t, — co. Let f, = f(t € (t;_1,t;]) and
fui(v) = f(vlt € (ti_q,t;]) when i < n. Let f,} = f(7 € (t,,_1,00) and

f(V|T € (tn_ly tn]) + 6v:1Ef[V|T>i’n]f(T > tn)

f

In words, the discretized distribution f, merges f within each interval (¢;_;,t;]. Note that

fn,n(V) =

we assign the merged mass to t;. As a result, this operation only relaxes the constraints
specified by Equation (2). For the last interval, f, contracts the mass of f after 7,. It is
straightforward that f, satisfies Equation (2) for i <n. When i = n:

Y FiEg, [H)] - H(po)
i=1

_ f f H)Af (v,0) + f(x > t,)H(Eg ]t > t,)) ~ H(po)
0 JS

<x- fmin{n £} £ (dp, do)

n
SX.J[ZITE(tiIfti]ti + ]‘TZtntn f(d’/l’dT>
i=1

n
=X- Ztifnl
-1

The first inequality is from Equation (2). The second inequality is from relaxing 7 to the
closest larger t;. Then, f, satisfies Lemma 5 and an implementing process ({u}'), t") € M
exists.

Since f diminishes at infinity, ({(¢#}')) satisfies Lemma 6, and hence a weak limit exists

d .
and pl, — p,. By construction, u’, i f;hence, u, ~ f. Q.E.D.
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Lemma 4. V1 € A(S), let y = E,[v]. H € C(S) is strictly convex. There exists a probability
space (Q, F,IP) and stochastic process (p)ie[o,1] S-t-

1. (py) is a martingale;
2. yo=pand py ~ 10

3. Vh <ty €[0,1), B[H(p,) — H(py) |, | = (2= 1) B [H(v) - H(p)].

Lemma 4 is a known result in Zhong (2022).

Lemma 5. f € A(S xIN) has discrete and finite support on the time dimension and f satisfies
Equation (2); then, f € .

Proof. Let the support of f on the time dimension be {t;}}_,. We prove by induction on
n. When n =1, Lemma 4 directly constructs (y;) and the stopping time is trivially = = ;.
Now, we assume that the statement is proved for n =k — 1.

For notational simplicity, let f' = Ef [lt:ti] and f;(v) = f(fl ) Let ot =t; —t;_;. Equa-
tion (2) implies:
k
et Y[
1
Now let f; be 7w in Lemma 4 and scale time by max{étk, W} Then, the process
(py) is defined for t € [0, max{étk, W}] and satisfies E[2 ] <I.
Case 1: ot} < w. Then, by construction,

IE[IE [H (pEattie)-ryo) ) = H(pEeto)-nu)_g, )] |\ F i)t _,, ] = [0ty
T T k T k

Note that I6t; < E,[H(v)— H(E,[v])]; hence, we do not travel back to t < 0. Let 7@ be the

distribution of yw_m-

Case 2: oty > w. Then, let 7 = 5;4=1Efk[1/]'
Note that by the construction of 7

Eq[H(v)]-Ez[H(v)] = 6t (28)

Let fk1 = fk-14 fkand

_ T fa )+ ()

fe1(v) 1y fF
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In words, we redefine ﬁ_l as the total measure of f;_; and “f; pushed back in time by #;

periods, following the trajectories specified by (y;)”. Let f otherwise be defined identi-

cally to f. Then:

The third equality is from Equations (2) and (28). Therefore, we verify Equation (2)
fork—1.Vi<k-

The inequality is from Equation (2) applied at i <k —1.
By induction, F is implementable by an admissible strategy ((uF), ).

k-1

) FEfHW)]

1
k-1

- ZfiIEfi [H(v)]+ fYER[H(v)]

1
k

=) fE4HM)
ok
2 |2S
1 j=i
k—

1 (k-1
=) [P
1\ j=i

IA

I5t;.

L,

I
| gl
|

=1

— H(po)

16t; — f*15t;

] 1+1f1Ef][ ]

] 1+1f
Zj:i+1f IEfj[V]

k .
Yij=iv1 f!

— H(po)

—H(po) + f*Ez[H(v)] - f*Ep[H(v)]

j=i+1

for f

F is imple-

mented by continuing (/41‘) from [t;_,t;] following (u;) on a probability f* event. The

stopping time 7* is t; on the same probability f* event and 7*!

otherwise. The filtration

of (y’f) within [t;_y,t] is then expanded by the natural filtration of (y;) and the (binary)

continuation event.

Q.E.D.

Lemma 6. {((yt) ™)} C Msatisﬁes Ve > 0 exists t >0, P(1" > t) < ¢. There exists ({y;),T) €

Ms.t. ((ufy, T) =

((pe), T) and pily 4 Jir.
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Proof. Y {((u),7")} C M, it is wlog to assume that u! is constant for t > . V5 > 0,

define 7; = " + 1. Each ((u{), 1) defines a joint probability measure P" on Dy, x R". Let

the space be equipped with the product topology of the Skorokhod topology and Borel
topology. Next, we prove that the collection {P,} is tight. It is sufficient to check tightness

n
Ul
are diminishing uniformly at infinity. It is trivial that the processes (u}') are uniformly

for each marginal distribution. The stopping times t,’s are tight since the probability

bounded in S. Since H is strictly convex, Ve,
H’[%a —Hil2 f‘ﬁ] < P[H(#ﬁa) - H(p) = VH(pi) (5 — 1) 2 €|J-“t]

where & = miny, yes |y yze (H(v) —H(p) = VH(p)(v — p)) > 0. The variation constraint im-

plies:
P{ ()~ HOit) - VH G iy~ 1) > E| 7 |- &
+P [H(ﬂ?+5) —H(pt) = VH(p) (5 = ) < é|7-2] 0
<E[H(p}.;) - H(ui)| 7]
<x:-o.

Therefore,

H’[Iﬂ';a — il z e|J-“t] < %6 50
Therefore, we verified the two conditions for the Aldou’s tightness criterion on D,. Al-
dou’s theorem implies that {(u}')} is a tight collection of measures on D, (Theorem 16.9
and 16.10 of Billingsley (2013)). By Prokhorov’s theorem, there exists a limiting process
when 1 — oo in the weak topology, denoted by ({y;), 7,;). By Proposition IX.1.1 of Jacod &
Shiryaev (2013), since (y}') are uniformly bounded, (y;) is a martingale.

Next, we prove that IE[H(pt/) - H(;Jﬂ'ﬁ] <x(t'-t). VAe F,letd,(A) =sup,, ,calpr(w)-
pr(w’)l. Yu e S% Ve, let 6 be the continuity parameter of H at y. VA € F; s.t. p € {u(A)},
Vt'>t, {up(A)} = S and d;(A) < 19, then:

E[H(pp)IA] < lim E[H(})|A]

n—-oo

< lim (E[H (p)IA]+ (' = £)x)

n—-o0

<E[H(pu:)|A]+2e+ (t' = t)x

The first inequality is Fatou’s lemma. The second inequality is the variation constraint for
pi;. The last inequality is from the continuity of H and d;(A) < 6. Since ¢ can be chosen
arbitrarily small, this implies IE[H (py) — H(p; )| F] < (£ —t)x.
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Next, by Skorokhod representation theorem, there exists probability space (Q, F,P)
s.t. (ui,Ty) converges a.s. to (p;, 7). Then, 1)/ being adapted to (%") implies 7, being
adapted to (F). Yw s.t. (pf(w), 7 (w)) — (#t(w), 7y (w)). Pick € <n. AN s.t. Vn >N,
Ity (@) -y (w)l <& = Vst |t-1,(w)| <€, 1> 1"(w). Therefore, yj(w) are constant in
(Ty(@) =& 7y (@) + &). Then d(p(w), pr(w)) — 0 implies i, (@) = 4y () (@) = Bayyw)(@).
This suggests that: p7, SN Hr, -

Define 7 = 7, —1). 1\lIote that the analysis in last paragraph implies that with probability
one, py(w) is constant within (7, (w) - 1,7, (w)]. Since (u;) is cadlag, p;(w) is constant
within [, (w) -7, 7, (w)]. Therefore, for any w,w’ € Q s.t. (ps(w))i<14y # (hs(@))i<T4y and
Ty(w), 7y(0’) < T =1, ()<t # (ps(w))s<7. Therefore, T is adapted to (F;). Moreover,

a.s. .
Pron = Mo, SINCE piyn = pn and pig = i, . Q.E.D.

B Proofs in Section 3

B.1 Proof of Lemmal

Proof. If T is bounded, then the statement is trivial as A(S x T) is tight. We focus on the
case where T is unbounded. Then, there exists an increasing sequence (t,) € T such that
t, — oo. Define

()= sup  IE,[U].
he A(SxTN[t,,0)),
Ep[v]=p

Claim. u,, is upper semicontinuous. Moreover, the maximum is attained.

Proof. We begin with defining u,(y) := supy, U(p,t). Since lim; ., U(p, t) = 0, u,(p)
must be attained by finite ¢, denote this mapping by t = #(u). Moreover, ¥, — p such that
u,(p) converges, if t(p,,) is unbounded, then u,(y,,) — 0 < u,(p). If t(u,,) is bounded,
then wlog we can pick #(y,,) to be converging. Then, limu,,(p,,) = U(lim p,,, lim#(p,,)) <
u,(p). Therefore, u,(u) is upper semicontinuous.

Observe that u,,(u) is the upper concave envelope of u, (). By Caratheodory’s theorem,
Vu there exists a finite support probability measure (p;, ;) that has mean y and attains
i, (1). Therefore, h = (p;, uj, t(y;)) attains ,(u). Denote h,(u) a mapping from u to a
maximizer that attains ,,(¢) (invoking the axoim of choice).

Next, we prove upper semicontinuity. Suppose for the purpose of contradiction that
W — pbut limu,(u,,) > u,(u) + € for some € > 0. Then, since U(y,t) t_%) 0, there exists
tst. U(pt) <e/2for t >t. This implies that Vm, 3h,, € A(S x T N [t,,f]) that attains
1, (pm) — €/2. Note that the collection of h,, is tight, hence Ej;p,p, [U] > limu,(p4,,) —€/2 >
u, (). This contradicts the definition of u,,(u).

Q.E.D.
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Next, define

—~ U(pt) ift<t,
Un(pt) =4 __ .
u,(p) ift=t,

—

for pe S, t € T&t < t,. Obviously, ﬁn > U. Since U is bounded and continuous, U, is
bounded and upper semicontinous. This implies that Iﬁn(y, t)f(dp,dt) is upper semi-
continuous. Therefore,

supE/[U,]
feF
has a solution f, € A(Sx T N[0, t,]).

Consider the collection of {f,,}. Suppose it is tight, then, since [F is closed (per Lemma 7),
there exists f € F s.t. f, —» f and E([U] = limEfn[ﬁn] > Equation (P). Therefore, f solves
Equation (P).

Now consider the remaining case that {f,} is not tight, ie., de > 0 s.t. V¢, dn s.t.
£,(Sx T N[t,00)]) > €. Since ¢ is arbitrary, pick #’ = 2HIMH Then £(Sx TN, 0)]) > €

X€
implies t, > t’. Define

£ fn ift<t,
BB [t > 1)) ift >t

By definition, E/[U] = ]Efn[ﬁnlt <ty + Uy (Ey [plt > t,]) > Efn[ﬁn] >Equation (P). We
verify that f € F. Equation (2) is obviously satisfied for t < t,. For t > t,,

J X(1—-F(s))ds>x-t,-e >supH —infH.
s<t

The RHS is an obvious upper bound for the LHS of Equation (2). Therefore, f solves
Equation (P). Q.E.D.

Lemma 7. [F = {f|Vt, f satisfies Equation (2)} is closed under weak topology.

Proof. We prove by showing that FC is open. Since H is continuous on a compact set, it
is bounded. WLOG, let H be non-negative. Define

1 when t > t,
t—t
th,tz(t) =qti+ ; t, whent €[ty 1]
2= th
0 when t < t;
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for any t; < t,. Note that x;,(7) is bounded and continuous and 1.;5; < x;¢(7) < 1<y
Vf ¢ F, there exists t s.t.

H(LtLﬂf(d%dT)) + f | s @ dn- i) > - Ltu ~F(s))ds.

Since F is right-continuous in t. Therefore, 3t' > t,& > 0 s.t.

H(.L»Jsﬂf(dﬂ'dr))JrLgtJ;H(”)f(d”’dT)‘H(#o) ZX'J;St’(l —F(s))ds+e.  (29)

Now, consider
[omrapana o - xu(Dpf ()
~ [ LeasH () [ (o0) - 1o HOO (o
; H(j Lo (o) [ ()~ lrg)ﬂf(d,”:dT))
> [ LeaaHO (o) + [ (o0) = 10 HOO (o
' H(j ) —H(f(xt,m) - 1TSt>uf<dy,dT>)
> [ttt e | 1T>mf<du,dr>)

Zx-J ’(1 —F(s))ds+ H(ug) +¢.

The first inequality is from H being convex and HD1. The second inequality is from the
convexity of H. The last inequality is Equation (29). Since x;(7)H(p) and x;p(7)u are
both bounded and continuous functions of (y, ), there exists an open ball O s.t. f € O
and Vf’ € O,

[ rtnmtor @nan e [ - rms@nan) 2 [ 0P G e
_ (30)

Now, consider
[reeertor@pan i [1onf o)
= [ s G o)+ [ (s = 2 (DHGOS (ot
+H(f<1 S () [ (Lo xt,t«r))uf(du,dr))
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> [ R OH S o)+ [ (o= ) HOOS ()
+ H(J(l - Xt,t’(T))I/‘f(d%dT)) - H(J(lrst’ - Xt,t’(T))ﬂf(dﬂ:dT))
> [ et anao +H(j<1 _ xt,t«r)w(du,dr))

>x- f /(1 — F'(s))ds + H(pg) + %s.

The first inequality is from H being convex and HD1. The second inequality is from the
convexity of H. The last inequality is Equation (30). Therefore, f’ € ﬁF\C; hence, Fisa
closed set. Q.E.D.

B.2 Proof of Lemma 2

Proof. Lemma 2 is trivially true when T is finite. We provide the proof when T is a
compact interval and U is continuous. To prove Lemma 2, we invoke Theorem 1, chap-
ter 8.6 of Luenberger (1997). Let AEO = {f €A, IG(f)(t) € UC(T)}, denoted by the time-
continuous subset of AFO.”‘ We verify all conditions of the cited theorem, applied to
UC(T) and its dual space IL. First, the objective functional IU(V,T)f(d/,t,dT) is a real-
valued linear and continuous functional of f. AEO is a convex subset of the vector space
of all probability measures on (S x T).

Next, we verify that G is a concave mapping of A’fo into UC(T). VYfi,f, € Alfo, Ya €
[0,1],Vte T°,

—H(j Hlafix —a)fz)(dﬂ,dr))
=—H(af tﬂfl(dﬂ,dTH(l—a)J tﬂfz(dﬂ,dT))
z—aH(f tﬂfl(d%df))—(l—a)HU tﬂfz(dﬂ,dr))-

The inequality is from the convexity of H. This verifies the concavity of the only non-
linear term in G(-)(t). Hence, G is concave.

Next, we verify that there exists f € A,fo
cone. Let Let f ~1,_, xU(T)xa+1,- 1=supr X (1 — @), where 0 < @ < 1. In words,
f stops uniformly on T with probability @ and stops at sup T with probability 1 — a. By

e s C °
definition, f € A#o‘ YteTe,

s.t. G(f)(-) is an interior point of the positive

G(f)(t) =

14 JC(X) denotes all uniformly continuous fuctions on X. Note that G(f)(t) is not defined at 0 and sup T.
We slightly abuse notation and define it as its continuous extension.

S0ct(1-a) =(1-a)x
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Therefore, Vh € UC(T) s.t. ||h—G(f)|| < (1 —a)x, h > 0; hence, G(f) is an interior point.
Then, the cited theorem implies

sup fU(y,T)f(dy,dT) = r/{lin sup L(f,A), (31)
FeAS ,G(f)=0 L feal

where there exists A* € IL achieving the minimum on the RHS. If f* achieves the maximum
on the LHS, then

f*eargmax L(f,X%);
fehi

(32)
J G(f)(t)A*(¢t)tdt = 0.
teTe

VfeA,, VYe>0, Lemma 8 implies that there exists f’ € Aﬁo s.t. L(f,A) > L(f,A)—e€
for all A. Therefore, Equations (31) and (32) still hold when AEO is replaced by A, .
Q.E.D.

Lemma 8. Suppose T is a compacty interval, Vf € A
dip(f, f) < € and G(f) 2 G(f) - e.?

Proof. Vf € A, , G(f)(t) has bounded variation and only jumps down. Therefore, G(f)(f)
can be decomposed into g(t) + h(t), where g is bounded and continuous and h is bounded

. ra C
o Ve > 0, there exists f € Aﬂo s.t.

and decreasing. Define the “delayed” measure

0 t<s
Fiut):={f(ut->s) t € [s,sup(T))
f(uw[t—s,sup(T)]) t=sup(T)

s—0

In words, f* delay the distribution of f by s. By definition, dj,(f*, f) — 0. Pick 6 >0
st [U(t)=U(,t=s)I<e, dip(f° f) <€, and [g(t) — g(t +5)| < %e when s < 9. Then,

G(f)(t) 2G(f)(t —s)
=g(t—s)+h(t—s)
>g(t)+h(t)e
=G(f)(t) - e.

Let ]?be the uniform randomization of f¥, for s € [36,5]. Then, dlp(]?,f) <e. Since Gis a

concave operator of f, G(]?)(t) >G(f)(t)—e.
Next, we prove the uniform continuity of G(f). Note that V¢ <t' <t + 39,

—

fU(££])

15 dp is the Levy-Prokhorov metric.
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When t € [0, %5], by construction, G(]/‘\)(t) = x. Ye > 0, let y be the continuity parame-
ter of H corresponding to €. When t,¢" > %5 and |t —t'| < 6y/4,

—

IG(F) (1)t = G(F) ()| < |t = '|x + |t — '|max |H| + €

Therefore, G(f)(t) -t is uniformly continuous for ¢ > %5. Since 1/t is a uniformly continu-
ous function when t > %6, so is G(f)(t). To sum up, G(f) € UC(T). Q.E.D.

B.3 Proof of Theorem 2

Proof. Sufficiency: Suppose for the purpose of contradiction that (f, A, a) satisfies Equa-
tions (9) and (10) and the complimentary slackness condition f is subopimal in (P). Then,
there exists g s.t. £(f,A) <L(g,A). Then, since £ is concave, Ya € (0,1),

Llag+(1-a)f, ) =LA | .
- > L(g,

(3,4)- £(f, 1
Llag+(L=a)f, )= L(f,) |

= lim 0
a—0 a
— [V org-idmdn+ jT %(x [ minte o) - £ do —LStH(#)(g—f)(dy,dr))dk(t)
- du,dt)) - du,d
i H([. mag+(1 a)f)(z 0)=H ([, nf(dp t>)dw)>0
a—U JteTe

2y-| _ w(g—f)(dpudt), Y9eVH(i;), by convexity of H.

— [vtsoig-iamans [ (v mint o) g fidnan- | Hoatg-imdn)arn
- [ vH@) [ g prdpdnan >0
teTe >t
= [ 1w - fddn >0
— [ 1patvIgtdpde) > a

The last line contradicts If y (4, 7) < ap. Note that in the proof of sufficiency, the selection
of VH(0) is arbitrary.
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Necessity: suppose f € argmaxyea, L(f,A). Vu, when T > £, select VH(0) s.t. VH(0) -
p=H(p). Since I y(p,7) € L¥(Sx T°),

(W= sup  Eglsuple)(p7)]
neA(S),Ex[ul=po teT*
is a well-defined real-valued concave function on S. Let ay be the supporting hyperplane
of I at po- Evidently, I¢ y(p, T) < ap.
Next, we prove that J-lf’/\(]xl,’[)f(d}t,d’[)) = apgy. Suppose for the purpose of contradic-
tion that flf,,\(y, 7)f(dp,d7) <apg. Then, since I¢ ) (p, T) < ap, there exists an open set and
€ > 0s.t. infO >0 and Io(a,u— lea(wT))f(dp,dT) > €. Let (p,7) = IEf[(//t’,T’)lO].16 Then,
E¢[lfa(p,T)O] <ap—e.
By the definition of I, there exists a finite support distribution 7w € A(S) s.t. By [sup c7o If A (1, T)] >
/l\(y)—£/4. For each p in the support of 7, there exists ©’s.t. I y (', T") > sup o Ip A (1, T) =
ie. We slightly abuse notation and let 7t denote the distribution of (¢, t’) pairs. There-
fore, Ex[lf (0, T)] > ap— 3.
Define g = f — f(O) - (f|lo — 7). Then,

i £+ (1= @, 0) = £(£.)

a—0 o

:fuw,r)(g—f)(du,dmj (x~fmin{m}(g—f)(dﬂ,df)—f H(#)(g—f)(d%dr))d)\(t)
teTe <t

i [ PUeites (- )dpdn) - H(f, wfdpd) |

a—0 teTo (04

:fumr)(g—f)(dy,dm f (x-Jmin{m}(g—f)(d%dr)—f H(ﬂ)(g—f)(dﬂ,df))dA(t)
teTe <t
— du,dt)) - du,d

T _H(mu(agm a)f)(Z 0)=H(f,,,nf(dp ") i

~Tim tzt_H(Lug(dy;dr))dA(t)

> [ Utnog- idpan +

teTe°

(x [ mint 01 (g - Piaman - LtH(y)(g—f)(dwdr))d»\(t)
—f VH(): f u(g — F)(dp,dr)dA(H) —f | HGogr dndaae
t<t >t t>t 1>t

:fwm)(g—f)(du,dmj (x'Imin{t,r}(g—f)(dﬂ,dT)—qu(#)(g—f)(dﬂ;dr))d)\(t)

teTe°

‘J(J j _VH@dA(t)-wJ _ H(ﬂ))(g—f)(d%dr)
t<min{z,t} te[f,7)

16Wlog, O can be chosen that a- u = [(4) as O can be arbitrarily close to the whole domain.
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The last line contradicts f € argmaxgea, L(f,A). Q.E.D.

B.4 Proof of Proposition 1

Proof. We prove by showing that Vf € FF, there exists f’ € IF s.t. [supp(f’(-t))|<2-(n+1)
and IU(,M,T)f’(d]/l,dT) > fU(y,T)f(dy,dT). ¥Vt € T, consider the following optimization
problem:

sup jU(w)ff(dm (33)
freA(s)
[ pfdpt)
s.t Erlrl= f(S,t) 7
o E IH f(du,t)
PN g

For a feasible f!, modify f by replacing f(-,t) with f’- f(S,t) and denote it by f’. This
modification does not change any term in Equation (2) except that L<t ) f'(du,dr)
gets weakly lower. Hence, the modified probability measure f’ is still in [F. Second, since
f(-,t)/f(S,t) is a feasible probability measure of Equation (33), if f! is the maximizer of
Equation (33), then Ep/[U] > E¢[U].

A direct application of corollary 3.1 of Doval & Skreta (2022) implies that there exists
f! solving Equation (33) with |[supp(f’)| < n+2.!7 Therefore, by replacing each f(-,t) with
the corresponding f*, we obtain f’ with [suppf(-,t)| <n+2and Ep[U] > Ef[U].

Let f be the solution of Equation (P) (existence implied by Lemma 1), then the corre-
sponding f’ satisfies the statement of Proposition 1 Q.E.D.

B.5 Proof of Proposition 2

Proof. Convex time preference. Suppose for the purpose of contradiction that A(t) is not
strictly decreasing for t < sup Supp(f), then there exists an interval [t1,1,] s.t. A(t) = A on
the interval and (f, < supSupp(f) and A(t) < A for all t > t,) or (t, = sup Supp(f)).

Let u~! be the inverse correspondence of u. Then, for t € [t1,1,],

m};axlf,,\(pt,t)—a-//t

7 Doval & Skreta (2022) improved the bound derived by Zhong (2018) from 2(n + 1) to n+2.
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= max g(v, t)+)(j A(t)dt — min {J VH(ﬁT)d/\(”c)-;4+A(t)H(/,t)+a-,u}
T<t v (0,t)

veu(S)

= max g(v t)+XA(t—t1)+XJ A(t)dt — min {J VH(ﬁT)d/\(T)-y+AH(;4)+a-y}
<t (0,11)

veu(S) peu=l(v)

Let v be the maximizer. Then, v} is decreasing (strictly if g,, < 0) in the strong set order
since g satisfies the decreasing difference property. The envelope theorem implies that

d ro
dr (m,?le Al t) = a-y)zgt(vt,t)+x/\,

where we slightly abuse notation and denote v} an arbitrary selection. Specifically, Vt < ¢/,
we can select vj > v}, (strict inequality if g;; < 0); hence, g/(v},t) > g/ (v}, t').
Therefore, max,, I \(p,t) —a- p is strictly convex on [t{, f,]. Consider

L A(m7, 1y + 61)

=lp A(my,, 1) + Ul(py,, ta + 6t) = Ulpy,, t2) + Xf A(r)dr
(t2 t2+(5t

+f (H (i, ~VH(e) - (4, — ) dA(7)
Te(tz t2+6t)
>1¢ A (M), 1)) + g{(vy,, 12) 0t + x At +0(t)

L A (mi, 1) - 6t + 0(0t).

:lf]/\(mtz, tz) + a‘t_)tz_

Therefore, max,, I \(p, t2) —a- p <0, because if otherwise, max,, I y(p, t2 + 6t) —a-p >0 for
small 6t > 0. This means there exists an open interval around f, s.t. f places no mass on
(which means t; <supSupp(f)), which implies Equation (2) being slack. This contradicts
A(t) > A for t > t).

The complementary slackness condition implies that Equation (1) is binding all the
time:

f H(o (o dr) + H(f tﬂf(d%df)) ~H(po) = x- fmin{tm}f(d»dr)
& E[H(py)] - H(po) = xE[min(¢, T)].
Combine the equality with

E[H ()] = H(po) < B[H (Bmint,c) — H(po)] < xE[min(t, 7)]
= H(p) = E[H (py)lT > t].

Since H is strictly convex, p;|T > t has to be degenerate and equal to ;. Q.E.D.
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B.6 Proof of Proposition 3

Proof. ¥V embeddable f, Equation (1) at t — sup T implies that

Ef[H(p) - H(po)] < xEf[7]
= Ef[u(p)] - «Ef[t] <Eflu(p) —x/x(H(p) — H(po))] < Equation (14).

This proves sufficiency.
To prove necessity, it is sufficient to prove that Equation (14) is attainable. V7 that is
feasible in Equation (14), define
S 0) = 70(p) - O __ Enlrio-ituo) -

X

It is straightforward that f satisfies Equation (1) and attains expected utility Es[u(u) -
Kt = By [u(p) -/ x (H(p) = H(po))]- Q.E.D.

B.7 Proof of Proposition 5

Proof. By the definition of ¢, there exists p s.t. I¢ 1(p, t) is maximized at t = t. Since the
constraint is slack before t, A; is constant prior to t. Therefore,

dAsa(pt)
dt
= J(t) +xAo <0.

li=i- = g/(u(p), ) + xAg =0

Suppose for the purpose of contradiction that £ > J ' o J(¢), then, Vu € S, Vt € (' o J(2),1),

gi(u(p),t)+ xA; <O0.

This immediately implies that the constraint can never be slack at any ¢, as starting from
t, 1, is strictly decreasing, so no (,t') to the right of ¢ will be optimal. We claim that
Ve > 0 there exists 0 > 0 s.t. Vt > -0, d,(f(p it € [t,f]),é]EfMTe[t'm) < €. Note that
Equation (1) holds as equality everywhere. Then,

E¢[H(p)-Eg[plr e [t,H]llr € [t 1] < x f ([t 2]) -

Taking t — t, the LHS converges to 0. Since H is strictly convex, this implies f(u, 7|t €

[t,1]) 4 6]Ef[ﬂ|re[t';]]. That is to say, Ve, It s.t. du s.t. (p,t) € Suppf and |[u - 1_%(”” < €.
Now, consider the FOC at (y, t):

dlf )
dt

=g/(u(p), t)+ x A+ A(H(p) - VH(jiz) - )

The first two terms are uniformly bounded away from 0 for all ¢ close to t. The third term
converges to 0 when € — 0. Therefore, the FOC is violated at (y, t), contradiction. Q.E.D.
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B.8 Proof of Lemma 3

Proof. V admissible strategy ({u;),{x:),7), let x; := E[x;|t < 7]. Then,

[ ~min{t,t}

]E[H(l’lmin{r,t}) - H(l"O)] <E 0 Xsdsl

r
€

[ ~min{t,7}

=E [E[x,ls < T]dsl
[ J0

[ ~min{t,t}

=E )?sdsl.

| JO

Let f ~ (p,, 7), the inequality is equivalent to

j Hw)f(du,de(f yf(du,dw)—Hwo)sf T.(1 - F(s))ds.
<t >t s<t

Meanwhile,

E [U(ﬂpf) —J-t Ct(Xt)dt] =E[U(py,1)]-E U Efc; (x)lt < T]dtl
<t t<t

<E[U( )]~ E U (Bl < r])dt]

- f UG o) f (dpe dr) — jct@)u ~F(1)dt.

Therefore, (P1)>(C1). As is established by Corollary 1.1, for any feasible (f, x) in (P1),
there exists an admissible strategy of (C1) implementing f and achiving the same payoff.
Therefore, (P1)=(C1). Q.E.D.

B.9 Proof of Lemma 2-A

Proof. Defined mapping G:

G(f () = %( | nas=r|prawani- [ Hpofpan -+ H(m)].

Rewrite the Lagrangian by replacing x; with 1_7;( ok

L= [ Ut saman - [o s )a-renars [ et mimaan,

with the convention that % = 0. Consider the space




() is a subset of the vector space of A(S xT)x L*(T), endowed with the product topology.
Let Q¢ be the time-continuous subspace of Q s.t. G(f,#)(t) € UC(T®). We verify that Q¢

is convex: Y(fi,m1), (fo,112) € Q¢, Ya € (0,1),

‘ < max{

Therefore, a(f,, 1)+ (1-a)(f, 1) € QF; hence, Q¢ is convex. By defintion, G is a concave
mapping of Q¢ into UC(T°).
Next, we verify that there exists (f,7) € Q¢ s.t. G(f,7)(-) is an interior point of the

any +(1—a)n,
1 —OCF1 —(1 —Q)Fz

"
1-F;

"2
1-F,

’

positive cone. Let f = 0,-,, - U(T), where U(T) is the uniform randomization and 7; =
1+ (1 —F(t)) for > 0. Therefore, (f,7n) € Q°. YVt e T°,
t

G(f,)(t) =1 Lt(l _ F(s))ds > 0;

hence, G(f,#) is an interior point.
Next, we verify that the objective

[viwosanan- [ (1 _”;(t))u ~F(t)de

is bounded , concave and continuous in (f, 7). Since % is bounded, the objective function
is obviously bounded. Note that the function ¢;(x/y)/y has positive semi-definite Hessian

matrix; hence, fct(%t(t))(l — F(t)) is a convex functional. It is obvious that fUdf is

1
l—Ft(t)
The cited theorem implies

continuous in f. Since

is (uniformly) bounded, it is continuous in (f, 17).

sup J U(p,7)f (dp,dr) - Jct (1_17—;(”)(1 —F(t))dt = r/{1i]£1 sup Z(f,n,/\)
(fmeQC,G(fn)=0 €L (fmeqc

= sup JUw,r)f(dy,dr)—fct(xt)(l—F(t))dt: min  L(f,x,A),
feAGyXEL®,G(f,x/(1-F))>0 A€l feAy,,x€L®

where there exists A* € IL achieving the minimum on the RHS. Note that the argument of
Lemma 8 applies here as well; hence, it is wlog to replace Ago with A, :

sup jU(y,r>f<dy,dr>—jct<xt><1—P(t))dt= min  L(fx00)

feDxEL®,G(f,x/(1-F))20 A€LL,felA g, xEL®

The LHS is exactly Equation (P1). Q.E.D.
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B.10 Proof of Theorem 2-A

Proof. Sufficiency: Suppose for the purpose of contradiction that (f, x,a, 1) solves Equa-
tions (16) and (17) but (f, x) does not solve Equation (P1). In other words, there exists
admissible (g, ¢) s.t. L(g, ¢, A) > L(f, x, A). Since L is concave, Va € (0,1),

1-G)+(1- 1-F
 Llag+(1—a)f, WEERLAD 4y £(f,x,A)
lim >0

a—0 o

— [vtnoig=framans [ ([ 6006000001 Flo)) = (g = )| aain

<t
1-G 1- 1-F(t
(LS CEX ) (1 - a G (1) - (1 - @)F(1) = e, (x,) (1 - Fy)

_lim dt
a—0 tGT a

_ H ag+(l—a)f)(du,dt (du,dt

= ([, #lag+(1-a)f)dpdr))-H([ _, nf(dp, >)Ou(t)>0
a—=0 JieTo o

= [vtworg-idpdo+ | (f (o1 = G(T)) = xo (1~ F(x) —H(y)(g—f)(dy,dw)dw)
teTe <t
—ft ) (F) =G0+ (1~ GUON ~ 1)l )
[ vHE@ | - fidmdndaen >o
teTe° >t
— [ vtwog-idpdo+ | (f (o1 = G(0)) = xe (1~ E(x) —H(M)(g—f)(dﬂ,df))dk(t)
teTe T<t
—f f q(x»dt(f—g)(dy,dr)dr—f (1 - G(1))(r — x)A(1)dt
TeT Jt<t teT
[ va@ | e fidmdndan >o
teTe° ™>t
—= [ 107 - dr) >0

= jlf,x,,\(y,r)g(dy,dr) > ap.

Contradiction.
Necessity: We begin with Equation (17). Suppose flc;()(t) — A(t)|(1 = F(t))dt > 0, then
consider an alternative path x; = x; —sgn(c;(x;) — A(t))e. Then,

LUFo k) = LUfrx0 ) f(cxxt)—ct(x;))(l—P(t))dt+f(f<t<xs xo)(1— E(s))ds | dA(o).
=f (o) — o)) + MOl - x) (1~ F(1)dt
H(x)>A(t)
+f () — i) + A, — xe)) (1~ E(1)dt
1) <A(1)
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[ @t ate - o) - eA@) (1 - Fods
ci(xe)>A(t)

+J( ((ce(xe) —ce(xe +€)) + eA(t)) (1 - F(t))dt

Xt)<A(t)
t

- (fX/\é (fx:A) —>J|QX

This leads to a contradiction to (f, x, A) being a saddle point.
Next, we pin down a and & and verify Equation (16). Yu € S, for T > £, select VH(0) s.t.
VH(0)-p = H(p) Since I¢ , ) is bounded,

(£)(1 - E(t))dt > 0.

(W= sup  Eglsuply, (4 1)]
elA(S),E [ul=po teT°
is a well defined real valued concave function on S. Let au be the supporting hyperplane
of T at ygpo. Evidently, e or(pT) < ap.

Next, we prove that flf,x,,\(y,”c)f(dy,d'c) = apy. Suppose for the purpose of contra-
diction that Jlf,x,,\(y,’c)f(dy,dr) < apg. Then, since I, 1(p, T) < ap, there exists an open
set and € > 0 s.t. infO > 0 and fo(apt— e T))f(dp,dT) > €. Let (p,7) = Ef[(4/,7')|O].
Then, Ef[l; , A(¢,T)|O] <ap—e.

Since ap :/l\( M), there exists a finite support distribution 7 € A(S) that attains /l\( H)—
For each ' in the support of 7, there exists 7" s.t. ¢, \(p/, ") > sup lf A (W, T) — 3¢
We slightly abuse notation and let 7t denote the distribution of (y’,7’) pairs. Therefore,
lEn[lf,)(,)\(V/'T,)] >ap— %

Define g=f — f(O)-(f|o — ). Then,

E.

H,,J;pa

lim K(ag-" ]-_ f X: K(f;X;/\)

a—0
- [ vtw - fiapdo +£ L wtcor-ronas= [ ttutg-piaman|as

i [ HlJpmagA-a)f)dndo)-H([,, nf (dpdv)
a—0 Jieo o

> [ ugweg-piaman+ | ([ rct-rends— [ kg~ fimdn)arn
- [ va@) [ wg-pramdnann- [ [ ot~ fidmdndao
i<t >t >t J1>t

~7(0). f 1t (o 07— flo)dpo )
>f(O)-(a;4—%—(a;4—e))> 0.

dA(t)

This leads to a contradiction to (f, x, 1) being a saddle point. Q.E.D.
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C Proofs in Section 4

C.1 Proof of Proposition 6

1
Proof. Let p(t) = p(1)aT, 1(t) = aT—lp(t)(;%(—f()t))“ +x [, Als)ds—b. Since & € CR", the
region where £* > 0 is a countable collection of open intervals. Let (¢/,t”) be such an open
interval. We first note that A(t) = 0 on (t/,t”). This is because (t’,t”) C supp(f)®, which
implies Equation (3) being strictly slack. Then, ?? implies A(t) = 0.

Suppose the first statement is not true. Then, for sufficiently small €, on (t” —€,t”),
177(t)>0.1(+") = 0 and I(¢) < 0 for t > t”. Therefore, I has a strict downward kink at +’. On
the other hand, A is constant on (t” —€,t”) and is decreasing when t > t”; hence, K(t)ﬁ
could only have an upward kink at t”. Contradiction.

Suppose p”’ does not switch sign in (t/,¢”). Since T<0on (t',t”) and t’ > 0, it has an
interior minimizer * € (', ¢”), which implies I”(t*) > 0. This necessarily leads to | having a
strict downward kink at t”. Follow the same argument as before, there is a contradiction.
Since % (t)a-1 switches sign finitely many times, such intervals much be finite.

Since £*(t) > 0 on (t/,t”), 2?2 implies f(S,(t’,t”)) = 0.

Next, consider the open region where £* = 0 and p”’ # 0. We prove that A(t) > 0. Since
&*(t) =0, Equation (23) implies A being twice differentiable and

a—-1 a+l1l — 1 —~
o’ (t)+ A(t)aTA(t) +
aﬁp() XA (t)+——

(x Lt A(s)ds — b) (Kiffx"(t) n

Suppose for the purpose of contradiction that A(f) = 0. Since A > 0, A is locally minimized
at t; hence, A'(t) = 0. This implies A’(t) = 0 and A”(t) = 0. Therefore, p”’(t) =0, leading to
contradiction.

Since both the region where £* > 0 and the region where £* = 0&p” # 0 are finitely
many open intervals, the remaining region (£* = 0&p” = 0) constitutes finitely many
closed intervals. Q.E.D.

C.2 Proof of Proposition 7

Proof. Let f be a solution to the information acquisition problem and A be the corre-
sponding multiplier. Let { = sup Supp(f). WLog, we assume that p(t) > 0 YVt < f (otherwise
f can be truncated at f). Suppose A; is not strictly increasing for t < ¢, then the region
where A, is flat constitutes a countable collection of open intervals U(l;, ;). We prove by
induction that Vn, there exists an optimal strategy f, s.t. Vi <n, f[li,n] Gy, (t)fu(dp,dt) = 0.
Easy to see that it is sufficient to prove the statement for n = 1.

Wlog, assume that j(lw]) Gy(t)f (dp,dt) > 0. Let p* solve

¥ l ' s
JZAS argrﬁ‘fsx Falprr)
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ie. u'=M( (( )))>05 Let
* X tE(liﬂ’i)(ri —1;)f(dp,dt) J f(dp,do)
= max , ,dt
p H(:M*) t>r1; ’/l
Now, we claim that f; defined as
f(u,t) t<h

[a)
~
m
—_—~~
—~
—
-
<
—_
~

*

filwt) =1 5Gpvosn +80550n)  t=n

(1 - m]f(%t) t>n
t>r ’

solves the information acquisition problem and I(h ") G (t)fi(dp,dt) = 0. The latter is

obvious. We first verify that f; is a feasible strategy:

=Gy(t) =0 t<n
:f (t—1)f(dp,dr)>0 te(ly,n)
(llrt)

Gy, (#) :f R0 - HG) 20 =

:[1—p—]Gf(t)20 t > r;( while well defined)
Jtzrif(dﬂ’dT)
Note that Supp(f;) C Supp(f) U{(p*,71), (1 —p*,r)} C argmaxly ). Therefore, f; is optimal
since it satisfies Equation (23) on (0, ). By definition f[lpﬁ) Gy, (t)fi(dp,dt) = 0. We only
need to verify that IGf )fi(dp,r1) = 0. Note that G, (r1) > 0 only if p* = j fi(dp,dr) =
0. Then, r; is the last period. In this case, it is without of optimality to move f ,11) earlier
in time until G5, reaches zero at the mass point.

Now that we have a collection f; C F s.t. Vi < n, f an t)fu(dp,dt) = 0. Since
F is compact and U is bounded and continuous, there ex1sts a limit point f* € F and
f* is optimal as it achieves the same expected utility. Note that f, N f* implies G+ <
lim Gf, and Vi, f f (dp,dt) < lim fn(dy,dt) = 0. Therefore, fo*(t)f*(d/u,dt) =

tell;, tell;,r
0. Q.E.D.

C.3 Proof of Proposition 8

roof. Let r(t — ifferentiate the 0 uation w.r.t. f:
Proof. L = _dlosle®) gy he RHS of Eq 24

dr(t) (a-1)x(t)x”(t)—axx(t e (t (t) = (a = 1)x’(t)?
dt (@ —1)2x(t)? '
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When «’(t) > 0 and x”(t) <0, ’(t) < 0, which proves the first point of Proposition 8.
When «’(t) < 0 and «”(t) > 0, r(t) > 0 implies —«x’(t) < x - K(t)ﬁ. Therefore,

(@ = 1)r(8)c” (1) — axac(t)Tar’ (1) + (@ = 1) xic(t) Tar’(1)
(@ —1)2k(t)2

which proves the second point of Proposition 8.

r'(t) >

>0,

When «’(t) =0, r(t) is constant, which implies

K(t) =

(a—1)r

eC-ar+art_1

Note that when t — oo, — =

— —oo for any C € R. Therefore, the only possible
a-1

case where «(t) is well-defined is C = —oco and «(t) = ((afl)r) - Q.E.D.

C.4 Proof of Proposition 9

Proof. Step 1. We claim that in the equilibrium, the stopping time could not involve
any point mass. For the purpose of contradiction, suppose that player i’s stopping time
involves a point mass at t > 0. Then, for j # i, the effective discount factor

1 —rt
p](t) = ]Emin{r*—th} lml -e

jumps down at t. Let f* be the optimal strategy of player j. Let Borel measure f;*¢ =
Le[t Hé]f p#,ds). Define f€ = f*—f*Orepy t4e] + ff 0=t for € € (0, ). We claim that 3¢ >0
s.t. f7°(S) = 0. If not, let A; be the multiplier from the dual problem:

Li(f5A)=Li(fA)
=j G RCIAIE

+J(t (RO PO =B () H) ) By [H) + Hip a9

= L[w] |lul(pj(t — €)= pj(s)f*(dp, ds)

—(Aj(t—€)=Aj(t+€)f“(S)(x +supH —infH)
. Li(fA)=Li(f5A))

t=)—p;(t) — (A(t=) = A(t))(x +supH —infH) > 0

In the last inequality, we use the fact that tA;(t) is L' on [t —¢,t]. This contradicts the fact
that f* maximizes £;(f", A).
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Therefore, 3¢ > 0 s.t. f_;(S,[t, t +¢]) = 0. This implies

> pi(t)e ™D s <t
pi(s) ¢
= pi(t)e 7 se[tt+e]

Since f;" involves a point mass at ¢, this implies A;(s) = 0 on (¢ — 6, t) for some 6 > 0. On
(t—0,t):

with equality holds at b. Note that LHS is strictly convex, hence strictly increasing when
s — t—. On the other hand, inequality

_ar_

a—1p;(t)e a1
@ (ah(s)aT)

holds for s € [t,t + ¢). This means LHS is decreasing when s — t+, requiring Ai(s)ﬁ to be

+)(J A;(t)dt <b
T<S

strictly decreasing when s — t+. However, Ai(s)ﬁ could only have an upward kink at t.
Contradiction.

Therefore, Vi, ; = 0. The equilibrium is characterized by A;’s.

Step 2. We rule out any equilibrium that involves corner solutions, i.e. f ({-M,M}xT) >
0. Suppose it is optimal to stop at M at t, let z(t) = A;(t)/p;(t), 2? implies

pi(s)M + )(J A;(t)dt — M*A;(s) < b with equality at ¢

— p{(OM + xpi(1)z(t) ~ M (pi( 1) (1) + pl(1)2(1) = 0
= pl(1) (M — M2(1)) + xpi(1)2(t) - M py(1)2'(£) = 0
= (z(t)(x +rM*)—rM)-M*Z'(t) > 0

Note that whenever z(t) < %Ml_“, Assumption 2 together with the inequality above im-
plies z’(t) < 0. This means, for any t’ > ¢, it is optimal to stop at +M.

Next, we prove that for any p;, stopping at only +M from ¢ is dominated by stopping
1

at i( ﬁ)a Since p; is arbitrary, we normalize t to 0. Suppose for contradiction that

stopping at +M is optimal, then

M e .
gy |

— pi(T)e_/\T(aT_l—/\T)dT <0,

>0



where A = % Let p;(t) = e‘f‘”i(s)ds, where w; > r, then Vs > 0,

d a—-1 a—-1

all (e A= _ - _ (o[22 _
i TZOpZ(T)e ( " /\T)dT J;Zsp,(f)( " /\T)dTZO,

where inequality is strict when s > 0. This implies that
d 1 d Al-e

@ —(r+/\)r/\d - <0
At ) TTdATeA

X
= (a-1)r—-A=(a—1)r- 0
(a—1)r (a—1)r M“<

However, the last inequality violates Assumption 2. Therefore, we focus on only interior
solutions.

Step 3. We derive an ODE system characterizing the equilibrium. The sufficient and
necessary FOCs for an interior equilibrium define (¢}, p;, A;) solving:

dlog(pi(t)) _ X
= Zy;(t)a

j=i

pilt) = api(t)* A(t) (34)

a-1 pi(t) = 3
o L05) i [ Aods =

Define w;(t):= —w, then Equation (34) is equivalent (with additional initial condi-

tions p;(0) = 1) to an ODE system for w;’s:

W)=Y (@)= - (@0 -n)(

n—1

— nil@(f)—r)—(awj(t)—r)), (35)
JE

where w = % and ;5 (@(t) = 1) = (w;j(t) = 1) > 0.

Figure 11 illustrates the phase diagram of Equation (35) for the n = 2 case. In the
phase diagram, there is a unique interior steady state (the red point). There are more
stable points on the boundary (the black points). We would like to argue that a path of w
constitutes an equilibrium if and only if it starts from the red line.

Step 4. We verify the proposed strategies (conditional on C > 0) constitute all symmet-

ric regular equilibria of the game with w;(0) > 7. The proposed strategies defines

w;i(t) =r+(n—-1)A%t)
r

1=t
I_Ce(afl)r(tfi)

It is easy to verify that such w;’s correspond to all symmetric solutions of Equation (35):

wi(t) =(n = 1) (@i(0) = 1) = @i(t) - 1))

n

(@ilt) =)~ (awi(t) - 1))

n—1 n-—1
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Figure 11: Phase diagram of Equation (35).

w;—r

~(wi -2 - (@ - D)
with initial value no less than %

Step 5. We rule out any asymmetric equilibrium where @(t) is ever weakly higher than
7- This corresponds to the blue curve in Figure 11. Equation (35) implies

(1) =" ) (@0 - 1) - ) - ) (= @00 - 1) - (@il 1)

n n—1 n—1

n-—1

_ 2
_n . 1 [n(nf 1)2(a)—r)2 _ nil (w(t)—rn((a+1)w(t)—2r)+ Z‘(wi(t) —r)(aw;(t) - r)]

The inequality is the Jensen’s inequality (strict if the equilibrium is asymmetric). This
implies that w is always higher than w, the solution of

(1) = @(1) —r)( ~(a- 1>a)

when @ and @ have the same initial condition. w(t) has an explicit general solution:

-t




Suppose w(t) > m and w;’s are asymmetric, then @’(¢) > 0. Therefore, there exists
t'>tst w(t')> W Then, @(t) converges to oo in finite time. This implies that
at least one p;(t) converges to 0 in finite time. As a result, at least n—1 w; (¢)’s diverges
to oo in finite time (at the same time # where the first y(t) converges to 0). For notational
simplicity, denote these n—1 indices 2,...,n

Next, we argue that w, = --- = w,. Suppose for the purpose of contradiction that
w,(t) < ws(t) for some t, where wj is the largest among all w;. Wlog, we pick t that for all

t'>t, w5(t'), ws(t’) > 0. Then,

Wh(0) = @h(t) = @(0) - 1)~ (wal) - r))(n” (@(t) - 1)~ (aws(t) - 7))
(@0 -1 - @s(0) -1 (25 @0 - 1) - (@ws(t) - 1)
> (2 @(1) 1) - (@ + Das(t) 2r>)< () - (1)
— dlog(w3g:_w2(t))z(nz_”l(w(t)-r) (a+1)ws() Zr))
znfl(w(t)—r) ;(n:(w—r)w)w
nla-1),_
o @)

o (@)-r)dy
= (w3 —wy)(t+5) (w3 — wy)(t)- et a0 _

On the other hand,

Note that w3 — w; is growing in exponential rate while w3 is growing in polynomial rate
when @ — oo. Therefore, w, — —co0, which contradicts w;,(t) — +oo0. As a result, w,; = ws3,
i.e. w, =...w,. Note that if w; — oo, then w; is also identical to all other w;’s. So we focus
on the case w; < K < 0.

Next, we argue that w;(t) — r. Suppose not, i.e. w; —r > ¢ > 0, Equation (35) reduces

to
@) =(01 (1)~ [ 22 (@ 1)y (0
— 0} = cla= s
<K ea-nan



It can be easily verified that the RHS integrates to —co when t — t. However, w;(t) — oo
implies pj(t) — oo for i > 2. This implies contestant 2,...,n stops with probability strictly
less than one at #, which is clearly suboptimal.

However, w;(t) — r implies that the strategies is not interior; hence, we rule out this
possibility.

Step 6. We rule out any equilibrium where @(f) is always strictly lower than 7. This
corresponds to the green curve in Figure 11. Note that whenever w; = v}, w; = @’. i There—
fore, the order of w;’s does not change. Let w; be the largest (with possible ties). Choose
an arbitrary ¢, Equation (34) implies:

(it m0) == @00 - ) - (it n))( L @00 - ) - (it - 1),
where
(@0 -1 - @i - 1) 2 (2= @l - 1) - @(1) - ) > 0
(2@ -1 (@wit)) - 1) < (- @) -1 - (@@(6) - 1) <0
Therefore:

n

(it - o) < @0 - - @0 )

dt n—1 n—1 (cT)(t)—r)—(acT)(t)—r))<0.

n-—1

=7 (@(t)=7r)—(w;(t)-r) is strictly increasing with an upper bound. Therefore, it converges.
n

Suppose lim;_,, -5 (@(t) =) = (w;(t) —r) =1 > 0, then

lim d(a) (1) - (T)(t))

t—oo dt n—1
< Iim 17( " (@(1)- 1)~ (a@ ()~ 1) + a(@(1) - a)i(t))).
Suppose @ is bounded away from HT)(al) or w; is bounded away from w, the RHS is
bounded away from 0. But this contradicts the existence of limit. Therefore, there exists
a sequence of ty s.t. limw = limw; = W)() then, 11 = ](fl—)l()a_l) Since w; is the
largest, this implies limw; = W However, in this limit:
dott) (t)-1 a +0 ch(t) 1 d ’
ar 1@ 1-(n-1)a-1) 1-(n-1)a-1)

i.e. w diverges from the limit. Hence, this is not possible that 7 > 0.
Next, we rule out the possibility that # = 0, i.e. w;(t) — r. However, this contradicts
the strategies being interior. Q.E.D.
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